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ABSTRACT

Semiconductor microcavities have been used in important studies of several areas for technological or purely sci-
entific purposes. However, the definition of the optimal parameters for the fabrication of microcavities is a difficult 
task. Moreover, some uncertainties related to the growth process can change the device features. These prob-
lems cannot be experimentally controlled, hindering the development of theoretical models. In this work we pres-
ent a theoretical model to simulate the microcavities and also propose an evolutionary approach to optimize the 
device under uncertainty in order to ensure the growth with the desired features. Thus, based on the reflectance 
spectra of a AlxGa1-xAs semiconductor microcavity, the aluminum concentrations, x, and the number of layers that 
compose the heterostructure were optimized. This set of parameters may offer increased robustness in the growth 
process, while providing a considerable quality factor and the desired position of the cavity resonance, achieving 
the device’s operation limits. The device was optimized considering the cavity resonance between 700nm and 
2000nm, where the results indicate that the proposed algorithm is able to find satisfactory solutions, minimizing 
the problems caused by inaccuracy in the growth process.

Index Terms: microcavity; genetic algoritm; laser; reflectance spectrum; AlxGa1-xAs.

I. INTRODUCTION

In the last two decades, the semiconductor mi-
crocavities have been used for technological or purely 
scientific purposes. Ideally, a microcavity is a system 
in which a light-emitting material can interact with a 
single cavity-resonant-mode or no interactive electro-
magnetic modes within the material transition width. 
Thus, enhanced or suppressed spontaneous emission 
can be seen in this system, and in a cavity with a very 
high quality factor Q, an even spontaneous oscillatory 
emission can be induced [1,2].

Among the recent studies performed in micro-
cavities we can emphasize: (a) the development of low 
threshold emission lasers, since microcavities act as a 
laser without population inversion [3]; (b) construc-
tion of optical transistors [4] and other optical devices 
[5] (c) a parametric generator of twin photons through 
parametric up- or down-conversion process [6,7] (d) 
the Bose-Einstein condensate of exciton-polaritons 
[8]; (e) effects of fully controllable optical bistability 
[9], among many others.

In a typical sample, a gain medium is placed at 
antinodes of a cavity formed by two Diffracted Bragg 
Reflector (DBR) mirrors and kept at cryogenic tempera-
tures. During the growth process, usually by Molecular 
Beam Epitaxy technique (MBE), the sample rotates to 
ensure uniformity of the layer and minimize the rough-
ness on the interfaces. At a specific angle, the rotation is 
stopped to grow the spacer layer that generates a thick-
ness gradient across the sample. This allows the user to 
make a cavity-detuning when exciting the sample in dif-
ferent positions on the surface. The Q factor of the cav-
ity can be measured directly using an unpolarized white 
light source, focusing normally on the sample surface.

In order to synthesize devices with the desired fea-
tures, it is required an excellent coupling between the res-
onance cavity and the gain medium, which mainly consist 
of quantum-well(s) or quantum-dots. Thus, it is very im-
portant to find an exact coupling between the cavity-reso-
nance and the emission peak of the gain media. Therefore, 
beyond an architectural design project, a precise control 
of the growth becomes essential to take advantage from 
the optical properties of the sample materials.
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In this sense, a deep understanding of the ef-
fects of many layers that constitute the heterostructure 
allows computational design of samples in order to 
know, for example, their reflectance spectrum. Thus, 
even using materials engineering for the proposed 
new architectures, there is no way to determine if the 
design of the sample reached its optimal properties. 
Moreover, despite the growth of semiconductor nan-
odevices is well established, some small calibration er-
rors can occur due to small uncertainties in the rates 
of materials deposition during synthesis. This can lead 
to the development of nanometer devices with layers 
thickness slightly different than expected. A semicon-
ductor microcavity typically has tens of layers and these 
variations can generate problems in the final device 
operation. For this reason, in this work we performed 
the optimization of nanodevices considering the un-
certainties that may occur, in order to find the optimal 
parameters that can lead to the fabrication of robust 
devices, despite uncertainties involved. The optimiza-
tion of the parameters will be evaluated analyzing the 
reflectance spectrum of the heterostructure, where the 
main objective is to  find an architecture in which the 
cavity resonance is positioned in a desired point, but 
with the best Q factor.

To solve the uncertainty problem, we are pro-
posing a computational method using a Genetic 
Algorithm (GA) in order to optimize the architectures 
of microcavities based on semiconductor technology 
for the ternary alloy of AlxGa1-xAs while maintaining 
robustness. To the best of our knowledge, it is the first 
time that this optimization procedure is proposed for 
these structures.

In our model, the microcavity to be optimized 
present a 10nm of GaAs single quantum well (SQW) 
positioned on the center of a l-cavity. Thus, with 
these characteristics the SQW presents an emission 
peak about 800nm and, in this position, it is on the 
anti-node of the cavity normal mode, increasing the 
coupling between the SQW and the cavity photon. 
Thus, our purpose is to design a microcavity based in 
AlxGa1-xAs alloy that shows the position of the spectral 
resonance fixed in the desired value by the designer (on 
the emission peak of the gain medium). Furthermore, 
the algorithm must maximize the cavity quality factor 
(Q), but without significantly burdening the growth 
process. We have optimized microcavities with reso-
nance peak between 700nm and 2000nm with steps of 
100nm. The results show that our proposed method is 
efficient in order to find the optimized set of parame-
ters that allow the growth of the desired nanodevice 
even under experimental doubt.

This paper is organized as follow: section II 
presents the model to simulate the reflectance spec-
tra in microcavities and that had been applied in the 
optimization process; section III describes the opti-

mization problem and presents the algorithm details; 
section IV presents and discusses the results. Finally, 
concluding remarks are given in Section V. 

II. MICROCAVITIES SIMULATION:  
THE REFLECTANCE SPECTRA

The schematic of the microcavity structure that 
will be considered in this work is presented in Fig. 1. In 
this figure we can see that the heterostructure is grown 
on the top of a GaAs substrate oriented in the direc-
tion . Alternating layers of two different materials 
based on ternary alloy of AlxGa1-xAs are deposited on 
the substrate, where x is the concentration of alumi-
num. The deposition of the first two layers gives rise to 
the pair that is presented in the figure by white (refrac-
tive index n1 and thickness l1) and light gray (refractive 
index n2 and thickness l2). The periodic superposition 
of N1 pairs of layers creates a DBR mirror (Distributed 
Bragg Reflector) at the bottom of the sample. Also, an 
upper DBR mirror with N2 pairs of layers in formed. 
The two DBR mirrors are separated by a spacer layer 
(refractive index n3 and thickness l3) also of AlxGa1-xAs, 
forming a Fabry-Perot cavity type. A single quantum 
well (SQW) of GaAs, 10nm thick, is placed in the mid-
dle of the cavity. 

Figure 1. Schematic microcavity’s structure to be optimized. 
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To model the reflectance spectra of a microcav-
ity heterostructure we apply the transfer matrix tech-
nique, where the transfer matrix for the ith layer with 
thickness li, have the following format [10]:

 

 (1)

where  is the phase accumulated by the 
light to pass through the ith layer, being qi the refracted 
angle by this layer, that is related to incident angle q0 
by Snell Law, and

 (2)

defines the polarization component for incident light 
on the surface sample. Here, ni is the refractive index 
of the ith layer, ki = 2pni/l0 is the wavevector, l0 is the 
vacuum wavelength. In this case, an arbitrary linear 
polarization state is described by anglef, in which the 
TE polarization is given to f = 0 an TM to f = p.

For N layers the total transfer matrix M is given 
by the product of individual layer matrices:

 (3)

The coefficients A, B, C and D in eq. 3 are used 
to determine r and t coefficients, where:

 
(4-a)

and

,
 (4-b)

where nT and qT are the refractive index and the refract-
ed angle of the transmission medium, respectively. The 
transmittance and reflectance spectra are given by T = 
|t|2 and    R = |r|2.

The semi-classical theory for light propagation in 
a dielectric applies the Lorentz model [11] in which the 
electrons are considered damped harmonic oscillators 
driven by an external electric field. In order, the solution 
for the general wave equation for E (a homogeneous 
plane harmonic wave), provide us a complex refractive 
index h = n + i(c/w)a, where the real part (n) provides 
the dispersion behavior of the medium and can be de-
scribed by first-order Sellmeier equation [12]:

,
 (5)

where the coefficients A(x), B(x) and C(x) are fitting 
parameters, but now dependent of Aluminum concen-
tration x in the AlxGa1-xAs ternary alloy. In this model, 
the contribution to the decrease of the refractive index-
es due to lattice absorption is neglected. The imaginary 
part of the complex refractive index h is known as the 
extinction index, and and 2a is the absorption’s coef-
ficient of the medium (c and w are the vacuum light 
speed and the frequency, respectively).

The refractive index of AlxGa1-xAs has been wide-
ly measured for a certain range of wavelenghs [13], 
around the gap energy, and for specific multi-quantum 
well structures [14,15]. However, a general model to 
the optical dispersion of this alloy is necessary, and im-
portant material parameters may be found in order to 
design many optoelectronic devices. Thus, using the 
known experimental data for the refractive index of 
several values of x at 300K for AlxGa1-xAs alloy [13], 
we applied an empirical fitting from Eq. (5) to obtain 
Sellmeier’s coefficients as a function of x. The coeffi-
cients are fitted by a low order polynomial, passing 
through as many points as possible.

Since excitons provide a sensitive indicator of 
material quality, the high exciton binding energies 
found in these alloys are especially interesting. The 
mechanisms that broaden or shift the exciton reso-
nance, such as doping, strain, and phonon interactions, 
also broaden and shift the absorption edge. These ef-
fects influence the optical constants near the band gap. 
The description of optical absorption of semiconduc-
tors near the band edge, allowing the Coulomb inter-
action between electrons and holes, for the consequent 
formation of excitons has been worked out in the effec-
tive mass approximation by Elliott [16].

For the simple non-degenerate parabolic bands 
at the center of the Brillouin zone, in which transitions 
are direct and parity-allowed, the absorption coeffi-
cient in the region of continuous absorption is given 
by [16]:

 (6)

for

,
 (7)

where E(l) is the incident photon energy (wavelength), 
Eg is the energy gap, Ex = 2me4/(8pħe)2 is the exciton 
binding energy for 1s-state, e is the dielectric constant 
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and a0=4peħ2/(me2) is the Bohr radius. Moreover, m-1 = 
me

-1 + mh
-1, where me and mh are the electron and hole 

mass, respectively. The momentum matrix element 
at k = 0 is defined as  in which the 
strength of optical transitions is determined, and also 
governs the electromagnetic interaction with electrons 
and solids. The energy band curvature diagrams pro-
vide important information on the strength of optical 
transitions. Correspondingly, knowledge of the optical 
properties can be used to infer experimental informa-
tion about E (l). Thus, |Pcv|

2 give us the transitions 
dependence on the coupling between the valence and 
conduction bands and this is measured by the magni-
tude of the momentum matrix elements coupling the 
valence band state, described by yv,0, and the conduc-
tion band state, described by yc,0 and, therefore, must 
reflect the bands curvatures. Consequently, we include 
the band curvature in |Pcv|

2, where around of the 
Brillouin zone center (k = 0 : G point) this curvature is 
approximately parabolic.

However, it is know that AlxGa1-xAs ternary al-
loy undergo a direct-to-indirect gap transition when 
the Al concentration is x ≥ 0.45. In this case (for x ≥ 
0.45), the absorption is   given by [17]

,
 (8)

where b is the nearest neighbors distance. Moreover, in 
the case where the incident photon has energy below 
the gap energy, the absorption coefficient is given by 
[16]

,
 (9)

where a0 is given by (7) or (9) for E = Eg . The steep-
ness parameter, s0, is independent of the incident pho-
ton energy and is a temperature-independent constant 
proposed to be inversely proportional to the exci-
ton-phonon interaction strength [18]. In our purpose, 
s0 is Aluminum concentration dependent and have a 
polynomial behavior with x.

Based in these considerations, we have reused 
the experimental data presented by Sadao Adashi [13] 
for the extinction coefficient and the refractive index 
for AlxGa1-xAs to obtain a set of parameters for the gen-
eralized model. Our approach was validated by a su-
perposition of a measurement of the reflectance spectra 
and the corresponding theoretical curve (see Fig. 2a). 
In this figure, we present the results for a microcavity 
grown over a GaAs [100] insulating substrate, contain-
ing 22 pairs of AlAs/Al0.2Ga0.8As in the bottom DBR, 
and 26 pairs in the top DBR. The l-cavity is composed 

by Al0.3Ga0.7As. Our model corroborates very well with 
experimental data, where the resonance position have a 
great accuracy, validating it. The theoretical stop-band 
seems to be larger than the experimental measurement 
due to imperfections in the thickness of the constitu-
ent layers of the DBR mirrors. Despite the theoret-
ical fitting presents a transmittance higher than the 
experimental in the resonance, the quality factors are 
the same in both cases. Fig. 2b presents an experimen-
tal spectrum for a microcavity with resonance peak in 
912nm, where the DBR mirrors are made of GaAs/
Al0.3Ga0.7As with 30 pairs in the bottom and 26 pairs in 
the top. The l-cavity was made of GaAs, where a high 
transmission on the cavity resonance and an increasing 
in the Q factor to 1150 are observed. This structure 
was not used in the validation of the theoretical model 
because serious growth problems were reported during 
the synthesis. So, we cannot guarantee that the param-
eters are correct.

(a)

(b)
Figure 2. (a) Superposition of experimental (black line) and 
theoretical (gray line) reflectance spectra of a microcavity sample 
with resonance in 800nm. (b) Experimental reflectance spectra 
for a microcavity with resonance in 912nm. The characteristics of 
the samples are presented in the text. 
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III. THE OPTIMIZATION PROCESS

As it has been discussed earlier, the synthesis of 
semiconductor nanodevices, such as microcavities, is a 
challenging task because in order to create the desired 
device the correct set of parameters must be chosen. 
In this work we are looking for a microcavity with the 
highest possible Quality Factor (Q) and the correct po-
sition of cavity’s resonance peak (lo).

Quality Factor (Q = Dl/lo) is measured from 
the reflectance spectra, where the full width at half 
maximum (FWHM) of the resonance (Dl) and the 
cavity resonance position (lo) are obtained directly.

It is well known that the resonance peak po-
sition is directly related to the thickness of the cavity 
layer. So, if a particular position of the resonance peak 
is desirable, the thickness of the cavity layer is easily 
defined by Lc = m(lo/2nc), for an integer number m 
and a cavity with refractive index nc. Moreover, the 
thickness of the layers in the DBR mirror is given by 
LDBR = lo/4ni, where ni is the refractive index of each 
layer. However, the remaining parameters can slightly 
shift the resonance energy peak position from the de-
sired value. So, this displacement error, defined as DE 
= |Edesired - Eobtained|, shall be minimized.

The major challenge for designers is to find the 
best set of parameters before the experimental synthesis 
of the desired nanodevice. Such parameters will guide 
the specialist in the slow and expensive growth process. 
Whereas the relationship between the desired position 
of the resonance peak and the thickness of the layers 
are well known, the algorithm has to search for the 
others parameters involved in the growth process. In 
this way, the parameters involved in the microcavities 
optimization (MO) problem, as shown in Fig. 1 are: 
(a) Number of layers in the bottom DBR mirror - N1; 
(b) Number of layers in the upper DBR mirror - N2; 
(c) Aluminum concentration in the first layer of the 
pair - x1; (d) Aluminum concentration in the second 
layer of the pair - x2; (e) Aluminum concentration in 
the spacer layer (cavity) - xc.

Here, x1, x2 and xc are concentration values, 
ranging from 0 to 1. The parameters N1 and N2 are 
integer numbers between 0 and 30, which limits were 
defined to not let the synthesis of the device too ex-
pensive.

So, given a microcavity with its desirable reso-
nance peak and a set of parameters to be established, 
the MO problem consists in choosing the set of pa-
rameters, such that the Q is maximized and DE is min-
imized.

In this way, each possible set of parameters 
(solution) generated by the optimization procedure is 
simulated by the method described earlier. Given the 
output of the simulator we are able to calculate the 
Quality Factor (Q) and the error deviation (DE) to the 

desired position of the resonance peak. These variables 
are related to the fitness function of the solution by the 
equation bellow:

 (10)

where n is a factor of the importance of DE.
This way, the microcavity optimization problem 

can be summarized as to find the maximum of function 
F, given by Equation (10). This can be expressed by:

Solution = MAX[F] (11)

Nevertheless, although the synthesis process of 
semiconductors nanodevices is well developed, some 
inaccuracies are not fully controlled by experts. The 
major inaccuracy during the synthesis process is relat-
ed to the thickness of the layers and their roughness. 
The roughness problem can be minimized with the use 
of Molecular Beam Epitaxy (MBE) technique in the 
growth process. Since our target devices are in nano-
meter scale, small variations in layers thickness can 
significantly impact the final result. Thus, the optimi-
zation process developed in this work has to deal with 
uncertainty. During the growth process two different 
problems can occur: (a) the MBE used to grow the 
device is calibrated to a specific deposition rate. This 
deposition rate defines how many atomic layers are de-
posited per second. An error up to 1% can occur in this 
process, leading to a thickness variation in all layers; 
(b) during the deposition of each layer a local error, 
also equal to 1%, can happen, causing the device to 
have layers with different thicknesses. 

It has been verified that ∆E is strongly related to 
the growth inaccuracies and the optimized parameters 
haven’t a great influence in the error, but can slightly 
minimize it. So, the main feature to be optimized is 
the Q value, but still considering the ∆E. In this work 
we set n=10 in equation (10) in order to slightly mini-
mize the influence of ∆E in the fitness function. 

In order to deal with this uncertainty, each set of 
parameters representing a solution has it’s fitness eval-
uated against 10 different microcavities structures, in 
which the first structure presents layers thickness in the 
DBR mirror given by LDBR = lo/4ni, where ni is the 
refractive index of each layer, as described earlier. The 
next nine structures are randomly generated consider-
ing the 1% error in calibration phase and the 1% error 
in the growth of each layer. The decision to use ten 
structures was due to the time consuming simulations 
for each solution, and due to a large number of struc-
tures to be evaluated. 

So, to ensure that the expert will be able to grow 
a microcavity with the desired features, the MO prob-
lem is now redefined as:
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There are two main genetic operators responsi-
ble to create the new individuals: mutation and cross-
over. Crossover is the process through which the ge-
netic information from two parents chromosome are 
combined to generate the new individuals. To avoid 
stagnation and to maintain population diversity, muta-
tion operators are applied. Normally, the mutation ran-
domly perturbs some of the genes in a chromosome. 
The new individuals are expected to be better or, at 
least, as good as their generators. The new individuals 
replace the ones with low scores, and the process re-
starts. The procedure is repeated until a stop condition 
is reached. Each cycle of the algorithm is known as a 
“generation”. 

In particular, the Genetic Algorithm proposed 
in this work, as shown in Fig. 3-a, starts with a random 
set of individuals whose chromosomes are built accord-
ing to Fig. 3-b. Each gene in the chromosome holds 
a floating point value ranging from 0 to 1. The first 
three genes are the Aluminum concentration, x, of the 
two layers in the pair of the DBR mirrors and of the 
cavity layer (see Fig. 1). The last two genes represent 
the number of pair of layers on each DBR mirror. As 
discussed before, the number of pairs of layers of each 
DBR was limited in 30. These individuals are evaluat-
ed through a fitness function that applies the simula-
tion described in section 2. Different fitness strategies 
were used as described by (12), (13) and (14).

The crossover operator applied is described as 
follow: two individuals are selected from the popula-
tion, considering their fitness values. They are used to 
generate a pair of new individuals through crossover 
procedure where each gene for each son is computed 
according to: 

Solutionlowest = MAX[MIN[Fi]]; (i = 1, 2, …, 10 (12)

where Fi is the evaluation of the ith structure. In this 
case we would like to ensure that the worst structure 
presents good features, allowing the synthesis of the 
desired material. This strategy has been named as 
“Lowest”. 

Also, the “Average” MO problem (strategy) is 
defined, and used to be compared with the previous 
strategy: 

Solutionaverage = MAX  (13)

In this case, we expect to find structures with 
homogeneous results, also overcoming the uncertainty 
problems. Finally, an optimization problem that does 
not consider the robustness can be defined as: 

SolutionHighest = MAX[MAX[Fi]]; (i = 1, 2, …, 10) (14)

The result of this optimization problem 
(namely, “Highest” strategy) can generate the highest 
possible fitness value, but it does not ensure that the 
microcavity will present the desired features after the 
growth process.

A. The Genetic Algorithm 

In this work we have applied a Genetic 
Algorithm (GA) in order to optimize the microcav-
ities. GA is a search and optimization algorithm with 
wide and successful applications in several areas of sci-
ence and technology [19]. Differently from other op-
timization algorithms, GA does not include the calcu-
lations of derivatives. It is an iterative algorithm that 
belongs to a group of techniques inspired in Darwin’s 
natural selection principle. These algorithms use a 
process based on genetic reproduction to achieve an 
optimal or sub-optimal solution of a problem. The 
procedure is as follow: each possible solution in a 
problem is modeled and codified in a string of bits or 
symbols. Such structure is known as “chromosome” 
and each bit or symbol is known as a “gene”. Thus, 
each of these chromosomes represents an individual in 
a population. In other words, it represents a solution 
in a pool of possible solutions. These individuals are 
evaluated according to predetermined criteria, known 
as fitness function, and receive a score that informs 
how good a particular individual (solution) is for 
the problem. In the sequence, individuals are chosen 
based on their score, in a way that individuals with 
higher scores have a larger probability of being cho-
sen. The selected individuals are combined and new 
ones are generated. 

Figure 3. (a) Implemented Genetic Algorithm. (b) Chromosome 
representing solutions. 
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Son1 = R*P1+(1-R)*P2 
Son2 = (1-R)*P1+R*P2 , (15)

where R is a random value between 0 and 1 
(generated by the algorithm), P1 and P2 are the genes 
of parent 1 and parent 2 of the selected couple, respec-
tively. 

After, these new individuals are randomly cho-
sen to perform one of two types of mutation: uniform 
or non-uniform mutations. These procedures of ge-
netic operators are repeated until a new population is 
full. In the case of this work, until the algorithm has 
achieved the defined population size. 

The uniform mutation is a process that choos-
es some genes to receive a new random value, while 
non-uniform mutation is deeply dependent of how 
many generations had been done. The non-uniform 
mutation is a technique to make a fine search and en-
sure that at least the local optimum is reached [19]. So 
a gene u is selected through a mutation rate, and the 
new value is computed by the equation bellow:

, if random value is 0

, if random value is 1
 (16)

where t represents the current generation number, LB 
and UB are the lower and upper bounds domain for 
variable u, respectively. ∆(t,y) returns a value in the 
range [0,y] that rapidly approaches 0 as the end of gen-
erations draws near and is given by 

 (17)

where y is the maximum value that the function can 
return, r is a random number from [0..1], τ is the max-
imum generation number, and b is a system parameter 
determining the degree of dependency on interaction 
number. 

In this way, we allow our search to spread in 
the space initially and very locally at later stages; thus 
tuning the search to minor steps, which brings benefits 
when minimum and maximum can be very near on the 
search space. 

When the algorithm reaches the final generation 
the GA is stopped, otherwise a new generation (or cy-
cle) begins. 

Basing in this model, we have done different 
experiments with microcavity resonance peaks in the 
range from 700nm to 2000nm with steps of 100nm. 
For each resonance peak we have applied three differ-
ent fitness functions [ (12), (13) and (14)], generating 
a total of 42 experiments. As a stochastic algorithm, 
for each one we have run 15 seeds, in other words, 15 

different GA runs within different random numbers. 
Each run has a population size of 40 individuals and 
a total of 200 generations. The elitism is ensured by 
always copying the best 5 individuals from the last gen-
eration to the current generation. The mutation rate is 
10% in which we have 50% of uniform mutation and 
50% of non-uniform mutation. 

IV. RESULTS AND DISCUSSION

In this section we present the results of the op-
timization process, comparing the proposed strategies. 
Moreover, we present and discuss how the Quality fac-
tor changes with the peak position. Also, a discussion 
among theoretical results and known experimental re-
sults is done. 

The results of the best solution found for ex-
periments with resonance peak in 800nm, 900nm and 
2000nm are shown in Table 1 (in the Appendix A). 
The results for the other peaks are not presented due 
to space limitation, but will be discussed qualitatively. 
The Table 1 is organized as follow: for each desired 
peak we present the results for the best solution found 
by the GA for each fitness strategy (Highest, Average 
and Lowest evaluation, respectively). The first column, 
“structure”, shows the number of each one of the ten 
structures used in the fitness calculation. The structure 
1 represents the device with the known theoretical 
thickness of the layers, the following structures rep-
resent the randomly thickness simulated microcavities 
considering the possible growth errors. The column 
∆E presents the shift in desired peak position (in meV), 
Q shows the Quality Factor of the structure, and Fi is 
the evaluation calculated by (10), considering n = 10. 
The last two lines show the mean and standard devia-
tion for ∆E, Q and Fi, respectively. The best mean and 
standard deviation are shown in bold. 

As expected, the three strategies, namely 
Highest, Average and Lowest evaluation, present the 
highest Fi, the highest mean Fi, and the highest min-
imum Fi, respectively. In the best results for the three 
strategies, all ∆E are small and in the same order of 
magnitude. The most important conclusion from the 
results is that the Average and Lowest Evaluation strat-
egies are able to find solutions with high robustness. 
In other words, we are confident that the expert can 
apply the set of parameters found to grow the device, 
once we can see low variation in the ∆E and Q values. 
Obviously, if we have applied the optimization proce-
dure without considering the uncertainty in the growth 
process we would not be able to ensure this robustness. 

For resonance peak at 800nm and “Highest” 
strategy, we can observe that the first structure, the 
one with no random variation in the layers thickness, 
presents the highest Q = 1600 and ∆E = 0. Only one 
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of the next nine structures presents a Q close to 1600 
while the other structures present Q close to 1330, a 
reduction of almost 17%. For all these structures the 
∆E is small. Looking at the results of the other two 
strategies (“Lowest” and “Average”), 9 out of 10 struc-
tures present Q close to 1600 and small ∆E. 

For the resonance peak at 900nm, all struc-
tures from fitness strategies “Average” and “Lowest” 
present a small ∆E and a Q close to 9000, with small 
variations. On the other hand, 2 out of 10 structures 
in the “Highest” strategy present a 50% lower Q. In 
last case, peak at 2000nm, 4 out of 10 structures in 
the “Highest” strategy show a 50% lower Q and, even 
worse, structure 6 presents null Q. This confirms that 
the uncertainty must be taken into account in the opti-
mization process. Despite the results for the other res-
onance peaks are not explicitly shown here, they follow 
the same trend.

Figs. 4-a, 4-b and 4-c show the reflectance spec-
tra for the best structures found for resonance peaks at 
800nm, 900nm and 2000nm, respectively. The set of 
parameters needed to build these structures is shown 
in Table 2. 

As can be observed in these reflectance spectra, 
all resonance peaks are tightly aligned in their respec-
tive frequency peaks, as desired in the optimization 
process. Also, all spectrum presents a very thin peak, 
which characterizes a good Quality Factor. The spec-
trum of the optimized microcavity of Figure 4-a can be 
compared with that of Figure 2-a, showing the huge 
improvement. 

The Table 2 shows all the set of parameters for 
each resonance peak and strategy presented in this 
work, which are needed to build structures presented 
in Table 1. 

Naturally, the best optical cavity expected to be 
generated by the optimization process would have a 
large number of pairs of layers constituting the DBR 
mirrors (maximum of 30 allowed in this work) as well 
as a large difference between the refractive index of the 
layers constituting the pair. Indeed, one can observe 
that the aluminum’s concentration of one of the two 

pairs in the DBR mirror are always close to 1 while the 
other is close to 0. Also, the number of layers is high, 
but not always 30.

Considering the optimizations of resonance 
peaks between 700nm and 2000nm, we can see how 
the Quality Factor changes as a function of the res-
onance peak. It is remarkable that the best Quality 
Factor found, after 900nm, increases linearly as the 
resonance peak increase, as can be seen in Figure 5. In 

(a)

(b)

(c)
Figure 4. Theoretical reflectance spectra obtained by AG for a 
microcavity optimised to: (a) 800nm, (b) 900nm and (c) 2000nm. 
The parameters found in each case are placed in table 2 (Highest 
Fitness Strategy, structure 1) .

Table II. Best parameters [Aluminum concentration for the cavity 
(xc), first (x1) and second (x2) layers of the DBR mirror (and the 
number of pairs of layers in each DBR, N1 and N2)] found for the 
microcavities.

lo  (nm) Fitness strategy x1 x2 xc N1 N2

800
Lowest 0.33 0.89 0.58 26 30
Average 0.35 0.98 0.55 26 30
Highest 0.28 0.90 0.57 27 28

900
Lowest 0.95 0.07 0.72 27 26
Average 0.96 0.02 0.78 25 27
Highest 0.14 0.85 0.59 24 26

2000
Lowest 0.08 1.00 0.64 22 29
Average 0.08 0.99 0.71 25 27
Highest 0.10 0.89 0.59 26 28
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the experiments performed for resonance peaks lower 
than 700nm, there was no Quality Factor found by the 
evolutionary process. 

The choice of present results of resonant peaks 
at 800nm and 900nm is because in the range between 
600nm and 850nm is found the energy gap of the ter-
nary alloy AlxGa1−xAs. Therefore, at 900nm the cavity 
resonance is in a spectral region below the band gap of 
GaAs, presenting a low optical absorption. The optical 
absorption contributes strongly to the cavity linewidth 
broadening. Thus, the choice of a spectrum region 
with low optical absorption can provide an increased 
Q Factor of the sample, as observed in the results pre-
sented. A high transmittance in the resonance cavity 
indicates that the light can escape out easily in normal 
mode, minimizing the threshold of the laser device. 

CONCLUSION

The optimization of semiconductor microcav-
ities under uncertainties is presented in this paper. 
Microcavity structure has attracted the attention of 
scientist and engineers and has been applied to techno-
logical or purely scientific purpose. The optimization 
of microcavities parameters is a challenging task, main-
ly because some uncertainties are related to the growth 
process. These issues cause the synthesis of semicon-
ductor nanodevices with undesirable layers thickness.

The optimization procedure proposed here was 
able to find satisfactory results, overcoming the known 
experimental solution. Also, the procedure found pa-
rameter sets that minimized the problem caused by 
the uncertainty. The results present high Q factor de-
spite the uncertainties involved, which can assist the 
experts in the development of optimized structures.  
Microcavities structures with different resonance peaks 
were optimized (from 700nm and 2000nm). Also, we 

show that after 900nm the quality factor increases lin-
early as the resonance peak increase.

The next step of this work is the experimental 
synthesis of these devices, which is already under dis-
cussion and will be held soon.
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APPENDIX A

Table I. Best results for resonance peak at 900nm, 1400nm and 2000nm. For each fitness strategy we present the ∆E, Q and Fi of all 10 struc-
tures. The last two lines show the mean and standard deviation.

800nm
Fitness: Highest Evaluation Average Evaluation Lowest Evaluation

Structure DE (meV) Q Fi DE (meV) Q Fi DE (meV) Q Fi

1 0.0 1600 1600 0.0 1600 1600 0.0 1600 1600
2 4.7 1329 1072 4.6 1329 1072 4.8 1595 1276
3 4.2 1330 1089 3.7 1596 1341 3.9 1596 1330
4 1.2 1332 1256 1.2 1599 1508 1.2 1598 1508
5 5.8 1328 1022 5.2 1594 1255 5.2 1594 1255
6 6.0 1328 1014 7.0 1592 1171 7.0 1592 1171
7 4.7 1329 1072 4.1 1596 1319 4.3 1595 1307
8 2.5 1597 1414 1.7 1598 1466 1.7 1598 1466
9 2.5 1331 1178 2.7 1597 1401 2.7 1331 1167

10 1.7 1332 1222 1.9 1598 1453 1.9 1598 1452
Mean 3.3 1384 1194 3.2 1570 1359 3.3 1570 1353

St. Dev. 1.9 113 188.8 2.1 85 160.8 2.1 84 146.6

900nm
Fitness: Highest Evaluation Average Evaluation Lowest Evaluation

Structure DE (meV) Q Fi DE (meV) Q Fi DE (meV) Q Fi

1 0.0 9000 9000 3.1 9020 7516 2.8 9018 7642
2 4.0 8974 7122 1.1 8993 8404 1.4 8991 8248
3 4.0 8974 7122 0 8999 8999 0.9 8994 8484
4 0.9 4497 4242 2.1 9014 7907 1.8 9012 8046
5 4.6 8970 6900 1.1 8993 8404 2.6 8983 7677
6 5.4 8965 6640 2.0 8987 7953 2.4 8984 7744
7 4.4 8971 6954 0.5 8997 8734 1.4 8991 8248
8 1.8 4494 4012 2.0 9013 7976 0.3 9002 8825
9 3.1 8980 7483 0.5 9003 8740 0.6 9004 8657

10 1.2 8992 8325 1.5 9010 8190 1.1 9007 8417
Mean 2.9 8081 6780 1.4 9002 8283 1.5 8998 8199

St. Dev. 1.8 1890 1570 0.9 11 459.0 2.4 12 415

2000nm
Fitness: Highest Evaluation Average Evaluation Lowest Evaluation

Structure DE (meV) Q Fi DE (meV) Q Fi DE (meV) Q Fi

1 0.0 20000 20000 0.0 20000 20000 0.0 20000 20000
2 2.1 19932 11864 2.0 19935 12081 2.1 19933 11935
3 1.6 9973 6518 1.6 19949 13211 2.2 19928 11586
4 0.5 19984 17227 0.5 19984 17227 0.4 19988 17846
5 2.3 19925 11385 2.0 19934 12008 2.3 19927 11518
6 3.1 0 0 2.5 19919 11005 2.3 19925 11385
7 1.8 19942 12621 1.7 19944 12784 2.2 19930 11723
8 0.8 9987 7990 0.6 19982 16933 0.5 19984 17227
9 1.2 9980 7180 1.3 19959 14155 1.0 19967 15012

10 0.9 9985 7740 0.8 19975 15980 0.8 19974 15852
Mean 1.4 13971 10252 1.3 19958 114538 1.4 19955 14409

St. Dev. 0.9 6976 5706 0.8 26 2882 0.9 29 3202


