
91Journal of Integrated Circuits and Systems 2015; v.10 / n.2:91-102

MogaMap2: Multi-Objective Mapping
Algorithm with parameter control for Optimize Area,

Performance and Power Consumption in FPGA
V. L. Souza1 and A. G. Silva-Filho2

1 Souza, V. L., Informatics Center (CIn), Federal University of Pernambuco, Recife, Brazil
2 Silva-Filho, A. G., Informatics Center (CIn), Federal University of Pernambuco, Recife, Brazil,

e-mail: vlss@cin.ufpe.br, agsf@cin.ufpe.br

ABSTRACT

This article presents a new technology mapper, MogaMap2, the second generation of the technology mapper,
MogaMap, based on a hybrid approach that use evolutionary algorithm associated with specific heuristics of the
problem in order to find better trade-off results among area, performance and power consumption. Different from
MogaMap, the new approach includes a deterministic parameter control that, during the process, modifies the mu-
tation probability. In a set of 20 large designs, we find that this adjust of parameter allow to reduce, in average, the
LUT count in 2% and the edge count in 4%. In comparison to state-of-the-art technology mapping, our approach is
able to reduce the LUT counts in 3% and the edges count in 10%. Placing and routing the resulting netlists leads
to an 3% reduction in the complex logic blocks count, a 7% increasing in estimated operation frequency and 8%
reduction in energy consumption.
.
Index Terms: Evolutionary Algorithm, FPGA, Technology Mapping.

I. INTRODUCTION

The FPGAs (Field Programmable Gate Arrays)
were introduced in the 1980s with the purpose of
provide reprogrammability, not available in ASICs
(Application Specific Integrated Circuits). Initially,
they were used only for fast realization of digital cir-
cuits. However, over the years, FPGAs have employed
increasingly more complex logic blocks, including,
memory blocks, Digital Signal Processing (DSP)
blocks and even processors. Therefore, it became pos-
sible to develop more complex designs using this archi-
tecture. They have been used in aerospace and defense
industry, medical solutions, wired and wireless com-
munications and as hardware accelerators in scientific
computing application.

Associated with an increase scale of application of
FPGAs, there was also an increased need to improve their
project metrics under some aspects: performance, area, and,
mainly, power consumption, since FPGA are power inefficient
compared to logically equivalent ASIC.

The quality of projects using FPGAs depends,
not only, the hardware described by the designer but
also the efficiency of the CAD tools that are responsi-
ble for converting the design onto a bitstream which is
loaded onto the chip to program the various switches
and obtain the desired functionality.

With this context in mind, the researchers are
taking advantage of influence of the CAD flow on per-

formance, area and energy minimization, to improve
the algorithms in some of these purposes [1][2][3].
Advances are also present on the commercial tools.
These are often optimized and the newest versions
promise new capabilities, enhancements and perfor-
mance improvements.

This article tries to contribute with this scien-
tific demand by presenting the second generation of
the technology map-per, MogaMap, presented in [4].
This new version is more efficient since, it adapts the
mutation probability parameter, in order to adjust it
to the different demands of evolutionary algorithm
stages.

The rest of this article is organized as follows:
Section II presents a background. The state of the art is
shown in section III, section IV presents MogaMap2.
The experimental results are presented in section V.
The Sections VI show the conclusions.

II. BACKGROUND

A. FPGA

FPGA (Field Programmable Gate Array) is an
architecture composed by I/O blocks, complex logic
blocks (CLBs), routing channels, programmable rou-
ting architectures, beyond embedded blocks. A general
view of FPGA Architecture can be seen in Fig. 1.

MogaMap2: Multi-Objective Mapping Algorithm with parameter control for Optimize Area, Performance and Power...
Souza & Silva-Filho

92 Journal of Integrated Circuits and Systems 2015; v.10 / n.2:91-102

The CLBs represent the vast majority of blocks
in the FPGA, and they are composed by a set of N
basic logic elements (BLEs). Each BLE contains Look
-Up Tables (LUTs) and registers. A K-Input LUT is
able to implement any function of its K inputs. The
modern architectures contain dual-output fracturable
LUT instead of traditional single-output K LUT. The
CLB have I inputs and N outputs (2N in case of frac-
turable LUTs). A simple architecture of BLE and the
CLB composed by N BLEs is shown in Fig. 2.

The routing channels consist of wire segments
that surround the CLBs from all sides. The input and
output pins of a logic block can be connected to wire
segments in the channels via a connection block. A
routing switch block is located at the intersection of a
horizontal channel and a vertical channel.

The embedded cores are special cores, like mul-
tiply blocks, memory blocks and, even, processors, that
allow the efficient implementation of complex system
on chip.

B. CAD Flow

The CAD tools are responsible for transform
the designer logic described in hardware description
language or as schematic, to a stream of “1”s and “0”s
that program the FPGA during the configuration. The
Fig. 3 illustrates the steps of a typical FPGA CAD flow.

The logic synthesis and optimization is a stage
technology-independent. In this stage the logic func-
tions are simplified and redundant logics are removed.
The technology mapping is responsible for map the
optimized user logic into the FPGA architectures com-
posed by LUTs and flip-flops, according to explained
in section II-A. After the mapping phase, the netlist of
LUTs and flip-flops is converted into a netlist of com-
plex logic blocks (CLBs), this process is executed in
stage named packing. The placement stage is responsi-
ble for distribute the complex blocks among the physi-
cal blocks into the chip. Finally, the routing determines
the resource routings that will be used to connect the
blocks placed.

C. Technology Mapping

The technology mapping is treated as a covering
problem. In order to solve this problem, a boolean ne-
twork is represented by a direct acyclic graph (DAG),
normally, this graph is an AIG (And-Inverter Gra-
ph). Technology mapping covers the circuit AIG with
LUTs, each LUT in the mapped network implements a
portion of the underlying AIG logic functionality.

A node in the graph represents a logic gate and
an edge (i,j) exists only if j is fanout node of i. A node
is a primary input (PI) if it does not have fanin and a
node is a primary output if it does not have fanout.
A fanin cone of a node v is a sub-network composed

Figure 1. General view of FPGA Architecture

Figure 2. Architecture of BLE and CLB composed by N BLEs. Figure 3. Typical FPGA CAD flow

MogaMap2: Multi-Objective Mapping Algorithm with parameter control for Optimize Area, Performance and Power...
Souza & Silva-Filho

93Journal of Integrated Circuits and Systems 2015; v.10 / n.2:91-102

by v and all the predecessors of v, such that any node
u presents in the fanin cone has a path to v that lies
entirely in the fanin cone. A cut is a partition (Xv , Xv

′)
that split the fanin cone in two regions such that Xv

′ is
a cone rooted at v. A cone rooted at v is a sub-network
composed by v and some of its predecessors. A cut is
K-feasible if the number of input edges in Xv

′ does not
exceed K. In practice, a K-feasible cone can represent a
K-inputs LUT. The level of a node is the length of the
longest path from any PI to the node and the network
depth is the largest level of an internal node in the ne-
twork. A PI node has level equal to zero. The graph
in Fig. 4 has 6 primary inputs (a to f), the fanin cone
of the node i is circulated and the cut split this cone
in two regions (X and X’) and the cone rooted at i is
composed by the nodes i and s. This cut is 3-feasible
because it has 3 edges. The largest level of a node in
the graph is 3, so the network depth is 3.

D. Evolutionary Algorithms

Evolutionary algorithms are stochastic search
methods that mimic the metaphor of natural biolog-
ical evolution. The concept behind evolutionary algo-
rithms comes from the idea of a population of individ-
uals competing for limited resources in some environ-
ment. This process causes natural selection and causes
a rise in the fitness of the population. The pseudo code
of an evolutionary algorithm is given in Fig. 5.

The population is formed by a set of individuals,
each individual encode a single possible solution to the
problem. The evaluation process assigned to each indi-
vidual is a fitness value. Individuals with high fitness
represent better solutions than individuals with lower
fitness.

The algorithm iterates until the termination
condition is satisfied. Each iteration, the individuals in
the current population are used to produce children us-
ing variation operators: recombination and mutation.
Recombination is applied to two or more candidates
and produce new candidates. The mutation is a per-
turbation applied to one candidate and results in one
new candidate. The new candidates are evaluated and
parents and children compete. The best one will sur-
vive and compose the new population. This process it-
erates until a candidate solution with sufficient quality
is found or a set computational limit is reached.

III. STATE OF THE ART

In [5] is presented the mapper WireMap.
WireMap uses an edge flow heuristic to improve the
routability of a mapped design. The heuristic is ap-
plied during the iterative mapping optimization to
reduce the total number of pin-to-pin connections
(or edges). The WireMap proposes to associate the
heuristics area flow and edge flow in a global optimi-
zation step, with specific heuristics of local area and
local edge in a local optimization step. This technique,
although being efficient for reducing the number of
connections, does not use information about activity
switching of the edges in order to reduce the power
consumption.

The mapper proposed in [6] is based on an al-
gorithm that was developed taking into consideration
the power consumption. The algorithm run in three
steps: In the first step are generated, for each node, the
set of all K-feasible cones. The second step computes a
cost function based on power estimation and depth for
each K-feasible cut and in the third step, using the set
of cost function, is determined the power-aware mini-
mum depth mapped network. It is not possible to mea-
sure the reduction on power consumption obtained by
the technique, because the experimental results do not
make comparisons with the state of the art.

The SVmap-2 presented in [1] uses techniques,
namely, global duplication cost adjustment, input
sharing, and slack distribution. The algorithm uses
cut-enumeration in order to generate all K-feasible
cuts of each node. During the cut selection stage, the
representative cut of a node that is not on a critical
path is picked as long as it will not violate the timing
constraint and will produce a better power in the same
time. This work does not present a comparison with

Figure 4. Graph representing a Boolean network

1: Begin
2: Initialize Population;
3: Evaluate Individuals;
4: While (termination condition is satisfied) do
5: Select Parents;
6: Recombine pairs of parents;
7: Mutate the resulting offspring;
 8: Evaluate new candidates;
 9: Select Individuals for the next generation;
10: end while;
11: end;
Figure 5. Pseudo code of an evolutionary algorithm

MogaMap2: Multi-Objective Mapping Algorithm with parameter control for Optimize Area, Performance and Power...
Souza & Silva-Filho

94 Journal of Integrated Circuits and Systems 2015; v.10 / n.2:91-102

algorithms that use efficient techniques to reduce area,
like area flow.

The MogaMap was presented in [4], it is the
only mapping approach based on evolutionary algo-
rithm. MogaMap associates the flow heuristics with
an evolutionary algorithm in order to find better trade-
off results among area, performance and power con-
sumption. The results presented in [4] show that it is
quite efficient in reduce pos-route metrics. However,
MogaMap does not use any parameters control, so that
the probabilities associated with each operator are con-
stant.

In order to better technical performance and
finding better reduction results, especially of number
of edges, we propose modify the algorithm and associ-
ate a deterministic parameter control that changes the
mutation probability parameter along the process. It is
necessary because the search process is characterized by
exploration in the early generations and exploitation in
the later stages. The lack of exploitation prevents the
algorithm evolve and prevents best least be found.

IV. MOGAMAP2

The MogaMap2 is the second generation of the
MogaMap [4]. The MogaMap is a hybrid mapping al-
gorithm inspired by the traditional nondominated sort-
ing genetic algorithm II (NSGA-II) [7] and that uses
an evolution specific heuristics of the problem in order
to reduce the search space and to drive the search to a
promising region. It is an algorithm based in cuts se-
lection. The metrics area flow [8], edge flow [5] and
switching flow [9] are used to select the cuts of each
node that are more useful to the desired goals. These
metrics are remembered in equations 5, 6 and 7.

During this section we present the details evolv-
ing each step of the MogaMap2. This include from
the form of individual representation until the detailed
pseudo-code.

A. The individual representation

In MogaMap2, each individual, that represents
one possible solution to the problem, is represented by
an array of size n, where n is the number of nodes into
the AIG, the array elements (genes) are arranged in to-
pological order. The Fig. 6 illustrates an example of a
network whose nodes a to f are primary inputs.

Each node in AIG has a quantity of valid cuts
(called domain) and each cut has an integer number as-
sociated. For example, considering 3-LUTs, the possible
cuts of each node in the network are shown in Table I.
The node w has 3 valid cuts, thus, the domain of node
w is 3. For the first valid cut (u,v) was attributed the
integer 1, for the second one (u,n,x) was attributed the
number 2 and so on.

In Fig. 6, the chosen cut for each node is repre-
sented by the dashed lines and the individual represen-
tation for this mapping is shown below the network.
According to Fig. 6 and Table I, the chosen cut of node
w was 1, therefore, the node w was mapped with the
cut (u,v).The node v was mapped with cut 2 (c,d,x), the
node u was mapped with cut 1 (a,s), the node s was
mapped with cut 2 (b,c,d) and the nodes x and n, that
have domain 1, were mapped with cuts (e,f) and (c,d).

A population is composed by N individuals. The
Fig. 7 shows an example of population with five individ-
uals for the previous network.

B. Recombination Operation

The recombination operation used in this work
is the one-point crossover. After selecting two parents
by binary tournament, the crossover point is drawn
and the children are produced through the combining
genetic material from the parents. The Fig. 8 shows
an example of the crossover operator action. The de-
coding of the individuals representing the parents and
children in the crossover operation is shown in Fig. 9.

Figure 6. Example of network and individual representation

Table I. Possible cuts and domain for each node

Node Domain Possible Cuts Integer number
associated

x 1 (e,f) 1
n 1 (c,d) 1

s 2
(b,n) 1

(b,c,d) 2

v 3
(n,x) 1

(c,d,x) 2
(n,e,f) 3

u 2
(a,s) 1

(a,b,n) 2

w 3
(u,v) 1

(u,n,x) 2
(a,s,v) 3

MogaMap2: Multi-Objective Mapping Algorithm with parameter control for Optimize Area, Performance and Power...
Souza & Silva-Filho

95Journal of Integrated Circuits and Systems 2015; v.10 / n.2:91-102

In this Figure, it is possible to verify the effect of the
combination of genetic material from the parents.

C. Mutation Operation

The mutation operation is responsible for chang-
ing the content of each gene, which means, changing
the chosen cut as representative cut of each node.
Typically, in the mutation process, each gene is visited
and it is decided whether the gene will be changed and
the new value assigned to it. For our approach, it is
not necessary to visit all genes, only genes that make
part of the current solution are visited. Genes that are
encapsulated in cuts are not visited. For example, for
the solution represented by the individual in Fig 7 (b),
only the genes that represent the nodes w, s, v and x will

be visited. The genes u and n are encapsulated and do
not make part of the solution.

In this process, the nodes are visited in topo-
logical reverse order. If a node is visited, the inputs of
its representative cut are also visited, until the primary
inputs are reached. The Fig. 10 illustrates a mutation
in a node and shows its effect in the mapping.

D. Objective Functions

The objective functions treated in this problem
are area, number of edges and activity switching of the
edges. The area (fA) is the LUT count in the mapping,
the number of connections (fE) is the quantity of con-
nections among the LUTs and the activity switching
(fS) is the summation of switching activities of all con-
nections between LUTs. Therefore, each individual has
an objective vector f = (fA, fE, fS).

During the process, all individuals are evaluated
and the objective function is employed to determine
the dominance levels.

E. Parent Selection

The parent selection is carried out using the
binary tournament, similar to proposed in NSGA-II.
In binary tournament, a pair of individuals is ran-
domly chosen from the population. The chosen in-
dividuals are compared using the operator (≥n). The
individual which win the tournament will become
one of parent.

Figure 7. Example of population with five individuals

Figure 8. Example of one point crossover operator

MogaMap2: Multi-Objective Mapping Algorithm with parameter control for Optimize Area, Performance and Power...
Souza & Silva-Filho

96 Journal of Integrated Circuits and Systems 2015; v.10 / n.2:91-102

G. Specific knowledge about the problem

The complexity level of the mapping problem
depends on the network structure, the network size
and the number of LUT inputs. The last one influences
directly in the number of possible cuts for each node.
On the other hand, it is known that a subset of this cuts
are not interesting from the standpoint of the expect-
ed metrics to the problem. Therefore, adding specific
knowledge about the problem can be used in order to
reduce the search space and lead the genetic algorithm
to promising regions. The idea is evaluating the cuts
according to their potentiality and invalidating those
which are uninteresting.

We are interested in cuts with some characteris-
tics. In order to evaluate the cuts, we use consolidat-
ed heuristics in the literature that allow us to measure
these characteristics and pre-select the cuts, discarding
those one which violate our constraints.

The first pre-selection is performed by excluding
cuts whose depth exceed the minimum depth of the
network. If a cut C is chosen to be a representative cut
of the node i, then the minimum depth of C is defined
as in (1).

(1)

The depth of a primary input node is zero and
the minimum depth of a node i (non primary input)

The process is repeated and the second parent is
determined. The choices are performed with replace-
ment, thus, in the same generation, the individual can
be chosen more than once to be parent.

F. Survivor Selection

The criterion used in the survivor selection is
determined by NSGA-II. According to this criterion,
parents and offspring compete to compose the new
population. The individuals are selected using the
non-domination level and whenever necessary, the
crowding distance is employed.

Figure 10. Mutation in a gene of the individual and its effect in
the mapping

Figure 9. Decoding of parents and children in crossover operator

MogaMap2: Multi-Objective Mapping Algorithm with parameter control for Optimize Area, Performance and Power...
Souza & Silva-Filho

97Journal of Integrated Circuits and Systems 2015; v.10 / n.2:91-102

is determined according to (2). In the other words,
the minimum depth of a node i is the smallest depth
among all the k-feasible cuts of the node i.

(2)

The minimum depth of the network is the larg-
est depth among all primary outputs. The depth metrics
are determined during the cut-enumeration process.

Once the minimum depth of the network is
determined, the network is traversed in topological
reverse order and, for each node, is assigned a limit
depth. The limit depth of a primary output is the min-
imum depth of the network, and the limit depth of
the other nodes is determined according to (3). Cuts
whose minimum depth meets the constraint of limit
depth are validated, otherwise, they are discarded.

(3)

The second pre-selection is based on a weight
assigned to each cut. The weight of a cut C rooted at a
node v is determined according to (4).

 (4)

Where AreaFlown(C), EdgeFlown(C) and
SwitchFlown(C) correspond to AreaFlow(C)[8],
EdgeFlow(C)[5] and SwitchFlow(C)[9] normalized ac-
cording to (5), (6) and (7).

(5)

(6)

(7)

The area flow is an extension of the area con-
cept. This heuristic is applied to give a global view of
how useful for the mapping is one cut choice. For a
node n, whose representative cut is C, the definition of
the area flow cost function is shown in (8):

(8)

In (8), Area(n) is the area cost of the LUT used
to map the node n. This cost is zero if the node is a PI

or one for the other ones. Inputi(C) represents each
input of C and NFanouts(n) is the number of output
edges of node n in the current mapping. The use of
NFanouts(n) in the denominator is fundamental to re-
duce duplication, since it takes into account the sharing
and favors the choice of nodes with more fanouts to
make part of the mapping.

Edge flow is a heuristic similar to area flow and
it predicts the total number of pin-to-pin connections
in the transitive fanin of a node. Minimizing the num-
ber of connections between the LUTs improves the
routability, since reduces the number of wires during
placement and routing.

The edge flow is defined in (9), where Edge(n)
is the number of inputs edges of the LUT used to map
the representative cut of the node n.

(9)

The switching flow estimates the switching as-
sociated with the logic required to map the node n that
has a cut C as representative cut. The switching flow
is defined in (10). Where Switch(n) is the estimated
activity switching to the node n.

 (10)

This second pre-selection is performed by deter-
mining the weight limit for each cut valid. Cuts of each
node, whose weights are highest that the threshold L,
will be invalidated. Let be M the average weights of all
cuts of a node i and m the smallest weight among all
cuts of i. Then L is:

 (11)

The values of αM, βM e γM in (4) allow adjust the
influence of area, amount of edges and power switch-
ing in the final mapping and F is a constant whose val-
ue has effect in the number of cuts validated for a node.
The cut pre-selection process of a node can be seen in
Fig. 11. In our example, the node has nine valid cuts,

Figure 11. Cut pre-selection process

MogaMap2: Multi-Objective Mapping Algorithm with parameter control for Optimize Area, Performance and Power...
Souza & Silva-Filho

98 Journal of Integrated Circuits and Systems 2015; v.10 / n.2:91-102

these cuts are ordered according to their weights. The
threshold L is between the minimum weight (m) and
the average (M). To this example, after pre-selection,
the number of valid cuts was reduced to three.

The pre-selection process is dynamic and is ex-
ecuted every generation along with update of the flow
measurements. The equations 8, 9 and 10 use the fa-
nouts number in their denominator. However, the ex-
act fanouts number can only be determined after the
mapping, given that so me fanouts of the original net-
work can be encapsulated within LUTs.

 In order to estimate the fanout number of the
nodes in the network, some models have been tested,
and the model that showed best results was proposed
in [8]. Thus, at the end of each generation, an individ-
ual of the population is selected as the reference solu-
tion and the fanout number of each node is estimated
based on this solution and using the selected estimation
model. After each generation, the estimated fanouts
number gets closer to the actual value. According to
the proposal, the estimated fanout number of a node v
is defined as in (12):

 (12)

Where NFanouts’est(v) is the estimation of fanouts
number of the previous iteration, NFanouts(v) is the fa-
nouts number of the current iteration, and α is a con-
stant that assumes values among 1.5 and 2.5.

H. Decoding

Decoding is the passage of genotype space
(search space) to the phenotype space (space solutions).
In this process, the individual represented by a vector,
with its elements encoded in integer number, is translat-
ed to a mapped network. The first step of decoding is
associating to each node a cut chosen as representative
cut and the second one is traversing the network in re-
verse topological order defining the nodes that are part
of the mapping.

I. Adjust of Mutation

The mutation has an important role in
MogaMap2. From this operator, the best cuts are se-
lected for each node and, the diversity of the popula-
tion is ensured. The first generation of this algorithm
(MogaMap) has used a fixed mutation probability. This
choice can limit the potential of the mapping because
genetic algorithms are characterized by exploration in
the first generations and exploitation in the final genera-
tions. A high mutation probability during all the process
may hinder the exploitation required for local searches
in promising regions, and at the same time, a low mu-
tation probability during the whole process can prevent
proper exploration of the search space.

In order to find the best mutation probabilities
for each stage of the algorithm, experiments were per-
formed which measured the variation of area (LUTs
count) and number of edges within intervals of 10 evo-
lutionary cycles. The experiments used the MCNC ben-
chmark and evaluated these variations for some values
of mutation probabilities. For each circuit, the algori-
thm was run 10 times and the average result was obtai-
ned on executions. These results can be seen in Fig. 12
and Fig. 13. From the Fig. 12, we can see that for the
first generations, the mutation probability of 30% is the
more appropriate, since it presents greater reduction in
the number of LUTs. Between 10 and 20 generations,
the mutation probability of 10% presents greater reduc-
tion. We can also observe that for the range between 20
and 30 generations, the mutation probabilities of 30%
and 20% start to present stagnancy and, the mutation
probability of 10% is better. After 30 generations, the
use of probabilities 30% and 20% is inadequate because

Figure 12. Percentage of area reduction per generation

Figure 13. Percentage of edge reduction per generation

MogaMap2: Multi-Objective Mapping Algorithm with parameter control for Optimize Area, Performance and Power...
Souza & Silva-Filho

99Journal of Integrated Circuits and Systems 2015; v.10 / n.2:91-102

it has practically no reduction in number of LUTs. This
is because the search space has been explored and lower
mutation probabilities should be used for more refined
searches around promising regions. At this phase the
probabilities of 10%, 7% and 5% had larger reductions
that 20% and 30%, but the probability that stands out,
with greater reductions in the number of LUTs after 30
generations, is 3%.

With respect to the number of edges among LUTs
(Fig. 13), we can conclude that for the first generations,
as well as in LUT counts, we have also had more sig-
nificant reductions to the mutation rate of 30%. From
10 generations, we noticed hegemony in the results that
correspond to the use of lower mutation probability of
3%. Also, we realize that in some intervals there is an in-
crease in the number of edges. The explanation for this
increase comes from the fact that we are working with a
multi-objective problem, where in some situations, opt
for a solution that reduces a goal can lead to the increase
of the other one. This occurs in the range between 20
and 30 generations when the mutation probability of
30% is used and between 40 and 50 generations, when
the mutation probability of 20% is used.

The last conclusion we can draw from our ex-
periment is that, regardless of the probability of muta-
tion, over the generations, the goal of number of LUTs
stabilizes much faster than the goal of number of edg-
es. The explanation for this fact is that the number of
possibilities of edges is much larger than the number
of possibilities of LUTs, in other words, we can find
solutions with the same LUTs count but several possi-
bilities of edges count among these LUTs.

In MogaMap2, we set the mutation probability
to 30% in the first 10 generations, 10% between 10
and 20 generations and 3% for other generations.

J. Core of MogaMap2

As in [4] we present the core of the MogaMap2
in Fig. 14. The first task is determining the switching
probability for each node (line 2), the Lag-one Model
[10] is used to determine it. After that, we use the
cut-enumeration method to compute the K-feasible
cuts of each node (line 3).

According to section III-G, we need to select
the cuts that guarantee the optimum depth mappings,
therefore, we determine the minimum level of each cut
and the limit depth of each node (lines 4 to 9). The
optimum depth of the mapping is the highest level
among all the primary outputs (lines 10 to 14) and
after define it, we can determine the limit depth of
the nodes and we can invalidate cuts that do not meet
depth constraint (line 15).

The next step is the second pre-selection (lines
16 to 23) as defined in section III-G. In this case, we
determine the area flow, edge flow and switching flow

for each valid cut and determine the weight according
to (4). The cuts of each node, whose weights are high-
est that the threshold L (11), will be invalidated.

At line 24, a initial population P0 is created
randomly. This population is evaluated and sorted ac-
cording to non-domination (line 26). After that, the
evolutionary cycle is started and runs for a number of
generations (line 28). For each generation we set the
mutation probability according to discussed in section
III-I (line 30). In the generation t, the parent popula-
tion Pt is used for selection, crossover and mutation to
create the offspring Qt (lines 31 to 36).

1: Begin
2: Determine_switching_probability(N);
3: Cut_enumeration(N);
4: for each node n in DFS order do
5: for each cut of n do
6: Determine_minimum_level();
7: end for;
8: depth_min(node) = minimum_level(cuts);
9: end for;
10: Optimum_depth = 0;
11: for each PO node do
12: if (depth_min(node) > Optimum_depth)
13: Optimum_depth = depth_min(node);
14: end for;
15: Determine limit_depth(N, Optimum_depth);
16: for each node n in DFS order do
17: for each cut of n do
18: Determine_flows(cut);
19: Determine_weight(cut);
20: end for;
21: L = Determines_Weight_limit();
22: Determine_valid_cuts(cuts, limit_depth(n), L);
23: end for;
24: P0 = Initialize_population();
25: num_iter = 0;
26: Fast_nondominated_sort(P);
27: t = 0;
28: while(num_iter < NUM_GENERATIONS) do
29: |Qt |= 0; //offspring pop
30: Pmutation = DetermineProbMutation(num_iter);
31: while (|Qt| < POP_SIZE) do
32: Select_parents_by_tournamet(Pt);
33: Crossover (Pcrossover);
34: Mutation (Pmutation);
35: Qt = Qt U children;
36: end while;
37: Rt = Pt U Qt; //parents U offspring
38: F = Fast_nondominated_sort(Rt);
39: i = 1;
40 while (|Pt+1| < POP_SIZE) do
41: Crowding_distance_assignment(Ϝi);
42: Pt+1 = Pt+1 U Ϝi
43: i = i + 1;
44: end while;
45: Sort(Pt+1, >n); //order by non- dominance
46: Pt+1 = Pt+1[0:POP_SIZE];
47: Ind_Ref = Select_reference_individual(F1);
48: Actualize_output_edges(N, Ind_Ref);
49: Actualize_valid_cuts(N, Ind_Ref);
50: t = t+ 1;
51: num_iter= num_iter + 1;
52: end while;
53: Ind_Ref = Select_reference_individual((F1);
54: Set_Mapping(Ind_Ref);
55: end;

Figure 14. PseudoCode of MogaMap

MogaMap2: Multi-Objective Mapping Algorithm with parameter control for Optimize Area, Performance and Power...
Souza & Silva-Filho

100 Journal of Integrated Circuits and Systems 2015; v.10 / n.2:91-102

Since all of the children were created, the par-
ent and the children population are combined (line 37)
creating the set Rt. The population Rt is ordered ac-
cording to non-domination (line 38). The new parent
population Pt+1 is formed by adding solutions from the
first front till the size exceeds POP_SIZE (line 40 until
44). Thereafter, the solutions of the last accept front
are sorted according to ≥n and the first POP_SIZE el-
ements are picked (line 46).

From the first front, the reference individual is
selected. This individual should be chosen according to
the user preference. In our case we select the one that
produces the smaller area mapping (line 47).

The mapping is completed when the preference
solution is selected from the first front (line 53) and
the mapped circuit is produced (line 54).

V. EXPERIMENTAL RESULTS

A. Mapping Results

In our experiments we use the MCNC bench-
marks in order to determine the MogaMap2 perfor-
mance. We compare three mappers: the wiremap (con-
sidered a baseline), MogaMap and MogaMap2.

During our experiments, we configured the
MogaMap2 parameters as follows: K = 6, αM = 0.5, βM
= 0.45, γM = 0.05, F = 40, Pcrossover = 90%, pmutation =
30% in the first 10 generations, 10% between 10 and 20

generations and 3% for other generations, POP_SIZE
= 20 and the NUM_GENERATIONS = 50. The
FPGA architecture used is composed by: CLBs with 10
BLEs. Each CLB has 33 input ports, 20 output ports
and one clock signal. A BLE contains a 6 inputs LUT, a
flip-flop and some combination logic. The experiments
have considered the 45nm transistor technology.

 The results are presented in Table II. The col-
umns #LUTs and #edges show the number of LUTs
and total number of pin-to-pin connections, respec-
tively. The column t(s) shows runtime in seconds. The
row Ratio1 shows the ratio of all results obtained from
MogaMap and MogaMap2 to the results obtained
from WireMap. Similarly, the Ratio2 shows the ratio
of all results obtained from MogaMap2 to results ob-
tained from MogaMap.

For setting parameters applied, the results lead
to conclude that, in average, MogaMap is not able to
reduce the number of LUTs significantly in comparison
to baseline (only 1%). But it is able to reduce the num-
ber of edges in 7%. For the same setting, the number
of LUTs has been reduced in almost 3% and the num-
ber of edges in almost 11% comparing MogaMap2
versus WireMap.

The experimental results also show that, accord-
ing to ratio2, our algorithm reduces in average the
number of LUTs in 2% and the number of edges in 4%
in comparison to the first generation of the algorithm,
the MogaMap.

Table II. Comparison of WireMap, MogaMap and MogaMap2

Benchmarks
WireMap MogaMap MogaMap2

#LUTs #edges t,s #LUTs #edges t,s #LUTs #edges t,s
ex5p 715 3667 2.59 711 3484 5.75 715 3427 6.70

apex4 896 4976 1.50 857 4147 6.51 863 4047 7.17
misex3 886 4523 2.30 860 4169 6.36 842 3996 6.88

alu4 934 4743 2.18 874 4265 5.80 833 3953 5.81
seq 1071 5657 2.13 1036 5053 6.80 1017 4845 7.53

apex2 1200 6202 2.42 1133 5455 6.34 1112 5210 9.84
des 1065 5024 3.28 1044 4811 8.13 994 4534 8.79
spla 2317 12764 6.44 2203 10817 21.24 2214 10543 18.55

ex1010 3260 16720 7.49 3105 15231 27.55 3109 14636 24.26
pdc 2713 15504 7.37 2706 13395 29.97 2715 13099 25.71

bigkey 575 2952 3.24 575 2952 5.28 575 2952 5.42
clma 4315 22757 6.88 4268 20862 50.15 4279 20421 48.11
diffeq 762 3575 2.36 749 3323 6.74 707 3146 .24
dsip 687 3400 2.68 689 3180 9.42 689 3180 5.65

tseng 748 3204 2.29 711 2902 5.29 715 2815 5.13
elliptic 1930 9157 4.59 2020 8898 11.73 1911 8500 13.00
frisc 1984 10098 6.34 1988 9803 20.53 1988 9688 17.18
S298 805 4244 2.56 883 4250 5.77 819 3805 7.99

S38417 3151 13254 7.78 3261 13286 15.20 3190 12999 21.89
S38584.1 2779 12269 5.21 2914 12620 26.06 2786 11817 34.15
GeoMean 1348 6746 4 1333 6270 11 1308 6037 11

Ratio1 1 1 1 0.989 0.929 3.006 0.971 0.895 3.150
Ratio2 1 1 1 0.981 0.963 1.048

MogaMap2: Multi-Objective Mapping Algorithm with parameter control for Optimize Area, Performance and Power...
Souza & Silva-Filho

101Journal of Integrated Circuits and Systems 2015; v.10 / n.2:91-102

B. Pos-Route Results

To evaluate the contribution of MogaMap2 to
the quality of circuits post placement and routing, we
run the CAD flow steps in the VTR framework [11]
that integrates the tools: ODIN II that performs elabo-
ration and synthesis on Verilog netlist; ABC, where we
integrated the MogaMap2 and VPR 6.0 that performs
clustering, placement and routing. The power estima-
tive was performed by VersaPower [12].

 In Table III we present the post routing results
of number of CLBs (#CLBs), channel width (W), to-
tal wirelength (LEN), estimated frequency operation
(f) and estimating energy consumption (EC). These
results refer to ratio of the values obtained using the
MogaMap2 and WireMap.

These experimental results lead to some obser-
vations: MogaMap2 achieved a 3% reduction in CLBs
while improved the frequency operation in 7%, we
cannot notice a significant reduction in the average of
channel width and total wirelength, only 2% and 1%
respectively, but the energy consumption estimated is
reduced in 8%.

VI. CONCLUSIONS

This article presented MogaMap2, a second
generation of Multi-objective Mapping Algorithm
based on genetic algorithm. MogaMap2 differs from
the state of the art in that it is a hybrid algorithm that
uses practical heuristics to conduct the search to prom-
ising regions. As a result, comparing with WireMap,

when targeting 6-LUTs and using a specific setting,
a reduction of 10% in the average number of wires
(or pin-to-pin connections) in the design is observed,
with a reduction of 3% in LUT count. In compari-
son with MogaMap, a reduction of 2% and 4% in the
LUT count and in the number of wires, respectively
was found.

In post place-and-route analysis, the reduction
of LUT counts was translated into reduction of CLB
counts. Intuitively, after placement and routing, the
reduced number of wires leads to reduction of capac-
itances and, consequently, increased the estimated fre-
quency operation in 7%. Besides that, the estimated
energy consumption was reduced in 8%.

We show that the deterministic control of the
mutation probability made the MogaMap2 more ef-
ficient than MogaMap. We believe that the control of
others parameters could become the algorithm still
better. In future works we intend include the develop-
ment of strategies in order to make the other parame-
ters of the algorithm adaptive.

ACKNOWLEDGEMENTS

The authors would like to thank to CNPq
(grants Universal/472317/2013-0), FACEPE, and
UFPE for the financial support of this research.

REFERENCES

[1] D. Chen, J. Cong, C. Dong, L. He, F. Li, and C. C. Peng,
“Technology mapping and clustering for FPGA architectures
with dual supply voltages,” Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, vol. 29,
no. 11, 2010, pp. 1709–1722.

[2] Yu-Yi Liang, Tien-Yu Kuo, Shao-Huan Wang, and Wai-Kei
Mak, “ALMmap: Technology Mapping for FPGAs With Adap-
tive Logic Modules,” IEEE Trans. on CAD of Integrated Cir-
cuits and Systems, vol. 31, no. 7, 2012, pp. 1134–1139.

[3] J. Luu, J. H. Anderson, and J. S. Rose, “Architecture des-
cription and packing for logic blocks with hierarchy, modes
and complex interconnect,” in Proceedings of the 19th ACM/
SIGDA international symposium on Field programmable gate
arrays - FPGA ’11, 2011, p. 227-236.

[4] Souza, V.L.; Silva-Filho, A.G., “MogaMap and DynPack: Mul-
ti-Objective mapping and packing algorithms for optimization
of area, performance and power consumption in FPGAs,” in
Proceedings of 27th Symposium on Integrated Circuits and
Systems Design (SBCCI), 2014, pp.1-6.

[5] S. Jang, B. Chan, K. Chung, and A. Mishchenko. “Wiremap:
FPGA technology mapping for improved routability and
enhanced LUT merging,” ACM Trans. on Reconfig. Tech.
and Systems, vol. 2, 2009, pp. 1–24.

[6] I. I. Bucur, C. Stefanescu, A. Surpateanu, and N. Cupcea,
“Power consideration in mapping LUT based FPGA circui-
ts,” in Proceedings of IEEE 5th International Conference on
Intelligent Computer Communication and Processing ICCP
2009, 2009, pp. 369–372

Table III. Comparison between MogaMap2 and WireMap.

Benchmarks
MogaMap2/WireMap

#CLBs W LEN f EC
ex5p 1.02 0.88 0.97 0.99 1.10

apex4 0.95 0.89 0.92 1.04 0.84
misex3 0.94 0.86 1.03 0.98 0.90

alu4 0.98 1.11 1.08 1.07 0.93
seq 0.97 1.00 1.00 1.40 0.72

apex2 0.95 0.96 0.97 1.06 0.88
des 0.69 1.00 0.85 1.21 0.92
spla 0.93 0.94 0.84 1.04 0.86

ex1010 0.96 1.07 1.03 1.06 0.96
pdc 0.90 0.84 0.76 1.17 0.65

bigkey 1.00 1.00 1.00 1.00 1.01
clma 1.01 0.94 0.98 1.25 0.73
diffeq 1.04 1.00 1.14 1.00 1.15
dsip 1.01 0.92 1.03 1.07 0.77

tseng 1.02 1.15 0.88 1.37 0.90
elliptic 1.04 1.00 1.11 1.03 1.01
frisc 1.02 1.00 1.02 1.04 0.98
S298 0.96 1.16 1.29 0.91 1.23

S38417 1.02 1.07 1.06 0.92 1.05
S38584.1 1.03 0.95 1.01 1.00 0.98
GeoMean 0.97 0.98 0.99 1.07 0.92

MogaMap2: Multi-Objective Mapping Algorithm with parameter control for Optimize Area, Performance and Power...
Souza & Silva-Filho

102 Journal of Integrated Circuits and Systems 2015; v.10 / n.2:91-102

[7] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II,” Evolucionary Computation, IEEE
Transictions on, vol 6, issue 2, 2002, pp. 182-197.

[8] V. Manohararajah, Stephen D. Brown, and Z. Vranesic. “Heu-
ristics for Area Minimization in LUT-Based FPGA Technology
Mapping”. in Proceedings of the International Workshop on
Logic and Synthesis, 2004, pp. 14-21.

[9] S. Jang, K. Chung, A. Mishchenko, and R. Brayton, “A power
optimization toolbox for logic synthesis and mapping,” Pro-
ceedings of International Workshop on Logic and Synthesis,
2009, pp. 1-8.

[10] R. Marculescu, D. Marculescu, and M. Pedram, “Switching
activity analysis considering spatiotemporal correlations,” in
Proceedings of the IEEE/ACM international conference on
Computer-aided design (ICCAD ‘94), 1994, pp. 294–299.

[11] J. Rose, J. Luu, C.W. Yu, O. Densmore, J. Goeders, A. So-
merville, K. B. Kent, P. Jamieson, and J. Anderson, “The
VTR Project: Architecture and CAD for FPGAs from Verilog
to Routing,” in Proceedings of the ACM/SIGDA international
symposium on Field Programmable Gate Arrays (FPGA ‘12),
2012, pp. 77-86..

[12] J. Goeders and S. Wilton, “VersaPower: Power estimation
for diverse FPGA architectures,” in Proceedings of the In-
ternational Conference on Field-Programmable Technology
(FPT), 2012 , pp. 229–234.

