
113Journal of Integrated Circuits and Systems 2015; v.10 / n.2:113-122

Exploring Optimized Hadamard Methods to Design
Energy-Efficient SATD Architectures

Luiz Henrique Cancellier1, Ismael Seidel2, André Beims Brascher3, Jose Luis Guntzel4, Luciano Agostini5

1, 2, 3, 4 ECL – Embedded Computing Lab., Department of Informatics and Satistics, UFSC –
Federal University of Santa Catarina, Florianópolis, Brazil

1, 5GACI – Group of Architectures and Integrated Circuits, UFPeL – Federal University of Pelotas, Brazil
e-mail: {l.h.cancellier, andre.brascher}@grad.ufsc.br, ismaelseidel@inf.ufsc.br,

j.guntzel@ufsc.br, agostini@inf.ufpel.edu.br

ABSTRACT

State-of-the-art video coding tools are submitted to severe performance and energy consumption requirements
resulting from high complexity of video standards and from limited energy budgets of portable mobile devices.
While providing most of the compression gains, inter frame and intra frame prediction techniques are the most
demanding steps, since they compare a huge number of blocks. In such a process, the similarity metric employed
affects both the quality of compression and the calculation effort. In this paper we propose the use of Hadamard-
based Sum of Absolute Transformed Differences (SATD), in replacement of the traditionally used Sum of Absolute
Differences (SAD), as a means of improving the efficiency of video coding. To allow that we explore two Hadamard
Transform methods to design efficient SATD architectures, one using the Fast Hadamard Transform (FHT) but-
terfly and another one using the so-called Transform-Exempted (TE) SATD algorithm. Those methods were com-
bined with architectural decisions (full parallelism, full parallelism with pipelining or multi-cycling) to build a total
of six Hadamard-based SATD architectures that were synthesized for a commercial 45nm standard cell library
for two operating frequencies. The architectures were simulated with pixel block data to obtain realistic dynamic
power and energy estimates. The TE-SATD architectures achieved the lowest energy results: down to 13.13 pJ/
SATD in the case of parallel architecture with pipeline. However, considering also the area results when evalu-
ating energy, the best results are given by both methods using multi-cycling (transpose buffer): nearly 20.75 pJ/
SATD with up to 63.54% smaller area compared with fully parallel architectures.

Index Terms: Video Coding; VLSI Design; Sum of Absolute Transformed Differences; Hadamard; Energy
Efficiency.

I. INTRODUCTION

In current video coding (VC) standards, in-
ter frame and intra frame prediction techniques are
the main responsible for the high compression rates
achieved. The former technique explores temporal
redundancies between frames, being one of the most
time demanding video coding tasks [1]. The latter
technique explores spatial redundancies of the already
coded blocks from the current frame. A block is a
sub-division of the frame (i.e., a sub-matrix of pixels)
which is used to facilitate the various coding tasks. The
allowed sizes for the blocks (e.g., 16×8, 8×16, 8×8,
4×4) are defined within each video coding standard.
In the video coder tool-chain of Fig. 1 it is possible
to observe that after selecting a block that best match-
es with the one being coded (considering both inter
and intra frame prediction), the coder computes the
residues (D), which are the differences pixel-to-pixel
between two similar blocks.

The residues are then transformed (T) and quan-
tized (Q). The block selection referred to in the pre-
vious paragraph is performed by the Block Matching
Algorithm (BMA) [2]. Basically, its task can be stated
as follows: for each M × N sized block being coded
(OM×N) choose, among the several available candidate

Figure 1. Main tools of the H.264/AVC [4] flow. Inter prediction
is presented by the Motion Estimation (ME) and Motion
Compensation (MC) blocks. The transform and quantization
steps are respectively shown by T and Q blocks.

Exploring Optimized Hadamard Methods to Design Energy-Efficient SATD Architectures
Cancellier, Seidel, Brascher, Guntzel & Agostini

114 Journal of Integrated Circuits and Systems 2015; v.10 / n.2:113-122

blocks (CM×N), the one that minimizes the similarity
metric to use as reference (RM×N). Due to its simplicity,
the most used similarity metric is the Sum of Absolute
Differences (SAD) [3]. It is calculated as:

	
(1)

where dij ∈ D’M×N = OM×N − CM×N.

Although for most applications SAD provides
an acceptable coding efficiency, more elaborated met-
rics are required to help improving compression effi-
ciency for current and next generation high definition
video standards. Unfortunately, dedicated hardware
architectures to implement such metrics are more
complex than those generally used to calculate the
SAD, resulting in silicon area and power consumption
overheads. Therefore, it is essential to optimize their
computation so as to reduce as much as possible those
overheads, thus making viable their adoption. Aside
the SAD, the most well-known similarity metrics are
the Sum of Squared Differences (SSD) and the Sum
of Absolute Transformed Differences (SATD) [3]. In
SSD the square operation is employed to give more
weight for larger differences than for smaller ones,
which results in coding efficiency increase. Area and
power consumption overheads come from the square
operation. SATD, by its turn, is able to provide even
higher coding efficiency because it correlates better
with the transform step, which will be explained in the
sequel.

The SATD is defined as:

	 (2)

where c ∈ R*
+ is a scaling constant and tdij ∈ TD is a

2-D transformed differences block, calculated by:

	 (3)

In Equation 3, T represents the transformation
matrix of an integer linear transform. In some works,
such as [5], the transformation matrix of the integer
Discrete Cosine Transform (DCT) is used. However, it
is more likely to find the Walsh-Hadamard Transform
(or Hadamard Transform, for shortly) matrix, as in
the H.264/AVC reference software (JM) [6]. The re-
cursive definition of Hadamard matrix (H), with size
2n×2n such that ∀n, ∃k ≥ 0 | n = 2k , is:

	 (4)

where ⊗ is the Kronecker product and H2×2 is the low-
est order Hadamard matrix [7], given by:

	 (5)

Fig. 2 illustrates how to obtain the Hadamard
matrix H8×8 by using the given recursive definition.

The benefits of using Hadamard-based SATD
comes from its correlation with the DCT, the most
commonly used transform in step T. Such correlation
allows reducing the quantization (Q) error. As it can
be seen in Fig. 1, the transform (T) is applied on the
residue matrix (D), which is calculated by:

 	
	 (6)

where (O) is the block being coded and (R) is a refer-
ence block chosen by the BMA (using a given similari-
ty metric) from either the intra or the inter prediction.
The coefficients resulting from the transform are then
quantized (Q). This way, the use of a similarity metric
that emulates the behavior of the transform step in-
creases the correlation between prediction and its effect
on quantization, thus reducing the generated error.

In short, the Hadamard-based SATD differ-
ences matrix (D’) calculation, 2) the 2-D transformed
differences block computation requires the following
three steps: 1) the (TD) calculation and 3) the sum
expressed in Equation 2.

For 4×4 pixel blocks, which is the block size of
interest for this work, the differences matrix D’4×4 is
obtained through the subtraction between the original

Figure 2. Recursive calculation of the H matrix for n = 8. Filled shapes
represents −1, while blank ones represents 1. Notice that the
shapes are kept according to Kronecker product (⊗).

Exploring Optimized Hadamard Methods to Design Energy-Efficient SATD Architectures
Cancellier, Seidel, Brascher, Guntzel & Agostini

115Journal of Integrated Circuits and Systems 2015; v.10 / n.2:113-122

block (O4×4) and a candidate block (C4×4). The 2-D
transformed differences block (TD) is calculated by us-
ing Equation 3, assuming as T the 4 × 4 Hadamard
matrix, which is defined as:

	 (7)

Finally, the sum of Equation 2 becomes:

	 (8)

As will be shown after Theorem 1, the 1/2 scal-
ing factor does not reduce the SATD precision because
the less significant bit of the resulting value (without
scaling) will always be zero.

As expressed in Equation 3, the considered 4
× 4 SATD requires a 2-D Hadamard transform on
a residue matrix, which is computed by two matrix
multiplications. Those matrix multiplications are the
main responsible for the area and power consumption
overhead with respect to both SAD and SSD. On the
other hand, both quality and compression rates result-
ing from using SATD are better than those resulting
from SAD and SSD [8], [9] because, considering
4×4 blocks, two among four base functions of H4×4
(Equation 7) are the same as for the integer DCT4×4
used in H.264/AVC [4], [10]. Therefore, the SATD
is well accepted for intra prediction [11], [12], once
the number of candidate blocks is far less than that for
inter prediction. For instance, there are only nine 4 ×
4 intra candidates in H.264/AVC [4], [13]. However,
in HEVC [14] there are 34 candidates in intra 4 × 4
[15]. Such increase in the number of candidates, even
for intra prediction, along with the larger number of
blocks caused by the adoption of larger resolutions
(e.g. 2K and 4K), encourages the adoption of more
efficient similarity metrics.

In [16], the authors explore the Hadamard
separability property, using two RAMs to store inter-
mediary transform results. The lines and columns are
transposed by a so-called “ping-pong” buffer, emulat-
ing a transpose buffer as defined in [17]. Also in [16],
the pipeline depth and its positioning are explored to
build fully parallel Hadamard transform architectures.
Unlike these, some works on SATD do not apply the
separability property of the Hadamard Transform. This
is the case of [9], where the authors use 2-D transform
blocks. To the best of our knowledge, none of the pub-
lications on the TE-SATD method present hardware
architectures, while [10] simply evaluated the number
of saved operations in relation to the MMB and FHT
methods. In our previous work [18] we analyzed the
area and energy of some Hadamard-based SATD ar-
chitectures.

In this paper, we explore two methods to cal-
culate the 4×4 Hadamard Transform, aiming the de-
sign of efficient SATD dedicated architectures. One
method is based on the Fast Hadamard Transform
(FHT) whereas the other one combines the FHT it-
self with the Transform Exempted (TE) method [10],
[19]. The main contribution of this paper is a thor-
ough evaluation of six SATD architectures that were
designed by combining the two Hadamard Transform
methods with three micro-architecture options (fully
parallel, fully parallel with pipelining or multi-cycling
with a transpose buffer). Each of these six architectures
were synthesized for a 45nm commercial standard cell
library for two target frequencies, totalizing twelve
versions of architectures. Those twelve versions were
evaluated and compared using the following figures of
merit: dynamic and leakage power, energy and silicon
area.

The main improvements of this paper are the
power and energy analysis by considering more accu-
rate switching activities, obtained through simulation
using realistic stimuli.

This paper is organized as follows. Section II
details the FHT-based and TE-SATD methods. The
six designed architectures are presented in Section III.
Section IV presents the synthesis and simulation set-
up as well as area, power and energy estimates. It also
establishes comparisons between twelve versions of ar-
chitectures. Conclusions are drawn in Section V.

II. HADAMARD-BASED SATD

To achieve efficient hardware architectures for
the Hadamard-Based SATD one must, first of all, op-
timize the calculation method itself. Then, design deci-
sions must be taken so as to take benefit of the particu-
lar features of the optimized calculation method.

Among the three steps required to compute
the HadamardBased SATD, the second one (the 2-D
transformed differences block calculation) is the most
complex and also the responsible for the area and
power consumption overhead with respect to SAD.
Therefore, special attention must be given to its real-
ization.

Two matrix multiplications are needed to cal-
culate the transformed differences matrix of order n,
TDn×n (Equation 3). A naïve method to accomplish
this would be to use the ordinary matrix multiplication
algorithm, which is O(n3). Nevertheless n is always a
small number, the number of multiplications and ad-
ditions required is large (e.g., for n = 4, 2n3 = 128
multiplications and 2n3 −2n2 = 96 additions). On the
other hand, since the H matrix is composed only of
+1 and −1, a straightforward solution to minimize the
number of operations relies on computing the trans-

Exploring Optimized Hadamard Methods to Design Energy-Efficient SATD Architectures
Cancellier, Seidel, Brascher, Guntzel & Agostini

116 Journal of Integrated Circuits and Systems 2015; v.10 / n.2:113-122

form using only additions and subtractions. In such
case, for n = 4 only 96 additions are needed. Finally,
the last step (i.e., the sum in Equation 2) is performed
by n2 absolute operations and n2−1 additions. For n =
4 the second and third steps of SATD require 16 abso-
lute operations and 111 additions. Hereinafter, we will
refer to this method as Matrix Multiplication-Based
SATD, or MMB-SATD for short.

A more efficient method to compute the sec-
ond step relies on using the so-called Fast Hadamard
Transform (FHT) [20]. Basically, it breaks recursive-
ly a Hadamard matrix Hn×n into two smaller matrices
Hn/2×n/2, resulting in a

complexity of O(n2logn). Such optimization
is made possible by the separability property of the
Hadamard Transform, which allows to apply two 1-D
transforms on the lines and columns of a given dif-
ferences matrix [16]. Each 1-D FHT operation, for a
single column or row, can be represented by a butterfly,
as the one in Fig. 3. The butterfly can be interpreted
as a map function defined over a given to another

. Especially in the case of a 4 × 4 Hadamard, it is
defined as (x1, x2, x3, x4) (t1, t2, t3, t4) as follows:

	 (9)

Each butterfly requires nlogn additions and is
executed 2n times, resulting in a total of 2n2logn ad-
ditions. For n = 4, 64 additions are needed which is
33% less than in the MMB-SATD method. That is
why the FHT is the method of choice to compute the
Hadamard transform in many works (e.g. [21], [17],
[16]), including the Hadamard-based SATD [9]. As in
the MMB-SATD method, the last step requires n 2 ab-
solute operations and n2 − 1 additions. Hence, for n =
4 the second and third steps of the FHT-SATD requires
16 absolute operations and 79 additions, which is near-
ly 25% less additions than the MMB-SATD method.

The third method considered in this paper is
called Transform-Exempted (TE) SATD [10], [19].
By using the FHT, it combines the second and third
steps of the Hadamard-Based SATD by absorbing part
of the absolute sum into the second 1-D butterfly step
of the FHT. By doing so, it achieves 38% and 17% of
operation reductions for computing a 4×4 SATD in
comparison to MMB and FHT-based methods, respec-
tively. Such algorithm relies on the following property,
proved in [10]:

Property 1.

	 (10)

To demonstrate the TE-SATD, Equation 9 can
be re-written as:

	 (11)

As mentioned before, is a 1-D FHT trans-
formed vector. Hence, it can be seen as the result of the
second 1-D transform. By such definition, let every tij
be one element tj ∈ T from a line i of TD. Thereby,
replacing tj by its form in the last factor of Equation
11, Equation 8 can also be re-written as:

	

(12)

By applying Property 1 to Equation 12, the fol-
lowing holds:

	 (13)

Therefore, instead of calculating the second but-
terfly (which requires n2log2n additions) and n2 − 1
additions for the third step, the TE-SATD method re-
quires only n2 + n additions, n2/4 maximum values and
n additions to perform the addition within the paren-
thesis in Equation 13 and n2/4 − 1 additions for the
third step. For n = 4, TE-SATD requires only 55 addi-
tions, 8 maximum values and 16 absolute operations.

Table I summarizes the number of operations
for the three presented SATD methods. Despite the
absolute operation takes a similar time than the addi-
tion, the former is not considered in Table I since all
three methods require the same number of absolute
operations. For the same reason, Table I does not in-
clude the subtractions required in the first step of the
three methods.

Among the three previously described meth-
ods, the FHT and TE are the ones requiring the least
amount of operations. For such reason, they were se-
lected as the starting point to investigate energy-effi-
cient SATD architectural implementations. The main
difference between those two methods relies on the
second 1-D transform step and on the sum depth.

Table I. Number of Operations for SATD algorithms – Additions
(A) and Maximum Values (M)

Method n n = 4
MMB-SATD 2n3 –n2 –1A 111A
FHT-SATD (2log2n+1)n2 –1A 79A
TE-SATD (log2n +5/4)n2+n–1A+(n2/2)M 55A + 8M

Exploring Optimized Hadamard Methods to Design Energy-Efficient SATD Architectures
Cancellier, Seidel, Brascher, Guntzel & Agostini

117Journal of Integrated Circuits and Systems 2015; v.10 / n.2:113-122

Fig. 4 shows the designed datapath for the
second step of FHT. The T block represents a 1-D
FHT butterfly, and performs the operations shown in
Equation 9 (Fig. 3). The shift right operations are con-
sequence of the following theorem:

Theorem 1. All elements of have the same parity.
∀ti , tj ∈ , ti is even ⇔ tj is even

Proof: Let every tj ∈ be written as (x1±x-
2)±(x3±x4) (Equation 9). Since the parity is the same
for addition as for subtraction, it follows that the parity
of all tj ∈ are the same.	 ■

Since all transformed values have the same pari-
ty, the result of adding two of them together is always
even i.e., the least significant bit (LSB) is 0. Therefore,
no loss is introduced if those values are divided by two
after they are added together. In this case, the final
division by two (constant c = 1/2 in Equation 8) is
performed earlier, while maintaining the originally de-
fined range.

The datapath for the TE-SATD algorithm is
shown in Fig. 5. Basically it operates as defined in
Property 1, except that the multiplication by two is
not performed because it was canceled by the scaling
factor in SATD definition (see Equation 13). It is also

possible to observe the absence of the T block and the
reordering of the TE-SATD inputs, reflecting the orga-
nization presented in Equation 12.

The two presented datapaths were combined
with each one of the three base architectures described
in the next section, giving rise to six Hadamard-based
SATD architectures.

III. BASE ARCHITECTURES

Half of the six Hadamard-based 4×4 SATD ar-
chitectures are based on the Fast Hadamard Transform
(FHT) whereas the other half use a combination of
the FHT with the Transform Exempted (TE) meth-
od. Unlike most correlated works, power and energy
assessments assume a realistic framework in which the
architectures were simulated with input stimuli gener-
ated from a real HD video sequence.

Although the HEVC standard defines
Prediction Units (PUs) that are larger than 4×4, many
VC works use small block sizes. Thus, we believe that
the design and evaluation of 4×4 SATD is still a valid
concern. A recent application example supporting our
claim is the Fast Intra Prediction Algorithm proposed
by [22], where 4×4 and 2×2 block. based Hadamard
transforms are used instead of the original 8×8 and
4×4 based transforms of the HEVC reference software
(HM) [23]. In this section we present the base archi-
tectures to compute the three steps in both FHT-SATD
and TE-SATD.

The so-called “Tree” architecture, shown in Fig.
6, is fully parallel. As first step, it performs 16 sub-
tractions between two 4 × 4 pixel blocks and then

Figure 4. Fig. 4 Fast Hadamard Transform (FHT) method block
(M) datapath for the second 1-D FHT along with the sum of
absolute transformed values of one row or column.

Figure 5. Transform-Exempted (TE method block (M) datapath
which takes four inputs already transformed by one 1-D FHT

Figure 6. Datapath of Tree and Tree-4stages architectures.
The M blocks represent the method blocks, which can be either
the FHT block presented in Fig. 4 or the TE block presented in
Fig. 5. The straight dashed lines represent registers: the Tree
architecture has only input and output registers, whereas the
Tree-4stages architecture has pipeline registers (intermediate
straight dashed lines).

Exploring Optimized Hadamard Methods to Design Energy-Efficient SATD Architectures
Cancellier, Seidel, Brascher, Guntzel & Agostini

118 Journal of Integrated Circuits and Systems 2015; v.10 / n.2:113-122

The third architecture, called “Transpose”,
adopts the transpose buffer (TB) shown in Fig. 8,
which is similar to the ones presented in [17] and
[24]. The Transpose architecture utilizes only one T
block and one method block, connected together by
the TB, as shown in Fig. 9. It also uses four subtractors
to generate the differences matrix and one accumulator
to perform the final sum. The Transpose FSM is pre-
sented in Fig. 7c. In state H1, the transpose buffer is
fed line by line with the 1-D transformed

performs in parallel four 1-D FHT (T blocks) on the
resulting differences. Hence, the connections between
the T blocks and the method blocks (M blocks in Fig.
6) implement the matrix transposition. The next step
is performed by the method block, which can be either
the FHT (Fig. 4) or the TE (Fig. 5). The remaining
sums of the third step of the SATD calculation is per-
formed by summing together all four transformed lines
(outputs marked as “m” in the method blocks). Such
parallel base architecture allows to perform the 4×4
SATD calculation in a single clock cycle. However, it is
important to notice that the Tree architecture requires
a large adder tree, resulting in a long critical path. The
Finite State Machine (FSM) to control the Tree archi-
tecture has three states as presented in Fig. 7a. The
SATD computation takes place in state CALC, where-
as the other two states are used for synchronization.

The “Tree-4stages” architecture was designed
looking for reducing the clock cycle through the ad-
dition of pipeline registers to the Tree architecture, as
represented by the dashed vertical lines in Fig. 6. It is
interesting to observe that even the four method blocks
are crossed by a pipeline register. The pipeline register
positions were fixed prior to synthesis. The control of
the Tree-4stages architecture uses a similar FSM (Fig.
7b) as the one used by the Tree architecture, except
that for each pipeline stage the pair CALC–DONE is
executed.

Figure 7. Finite State Machines (FSMs) used for controlling the base
architectures.

Figure 8. Transpose Buffer (TB) design and its storage cells (C). The
writing/reading direction of the transpose buffer is controlled by
the MSBof one 3-bit counter.

Figure 9. Datapath of Transposed 2T architecture. Input and
output registers are represented by straight dashed lines. The M
block is the method block. The T block is a 1-D FHT transform and
performs the operations shown in Fig. 3. The transpose buffer
(TB) is detailed in Fig. 8.

Exploring Optimized Hadamard Methods to Design Energy-Efficient SATD Architectures
Cancellier, Seidel, Brascher, Guntzel & Agostini

119Journal of Integrated Circuits and Systems 2015; v.10 / n.2:113-122

differences. After four clock cycles in state H1,
the FSM moves to H2 state. In H2 the TB dispatch-
es the received results to the method block column by
column during the next four cycles, while receives new
arriving data column by column. After that, the FSM
moves to DONE state and the first SATD is comput-
ed. Its worth noting that this architecture has a latency
of eight clock cycles: four cycles in H1 state and four
cycles in H2 state. When ready to proceed, the com-
puted SATD is cleared in state RSUM. From this point
on, a new SATD is computed after every four clock
cycles in state H2.

IV. RESULTS

Six Hadamard-based SATD architectures were
devised by replacing the M blocks in each of the three
architectures detailed in Section III (Tree, Tree-4stages
and Transpose) by either FHT-SATD or TE-SATD
methods presented in Section II. The six architec-
tures were then described in Verilog and synthesized
with Synopsys R Design Compiler (DC R) [25] in
Topographical mode for nominal voltage (0.7V) 45
nm TSMC [26] standard cell library for two operation
frequencies, one for target throughput and another for
maximum, resulting in a total of 12 cases. The target
throughput is the same one as assumed in [27] for
SAD: 16 million 4×4 blocks/s which, according to
the authors, is required for coding a 1080p video sam-
ple at 30 fps.

Table II lists the maximum achieved frequen-
cies and the required target frequencies for all syn-
thesis cases. The listed maximum frequencies are the
maximum ones for which the synthesis tool could
meet the timing constraints. However, notice that
reaching such high frequencies only allows for eval-
uating the maximum throughput allowed by the
architecture itself when combined to the used stan-
dard cell library, which is dependent on the size and
number of critical paths (architecture) and the pos-
sible cells to use in

such paths (library). Furthermore, such high
frequencies can be required in the case of using larger
spatial or temporal resolutions (larger frame sizes and
higher number of frames per second, respectively).

Because our architectures were designed iso-
lated from any surrounding BMA architecture, there
is no insurance on the devices that will drive the
SATD architectures’ inputs, nor the ones that will
be driven by our architectures. Therefore, one good
practice is to create both time and load budgets [8].
Concerning time, we took into account the latest
data arrival time in all devised architectures’ inputs
by conservatively limit the input delay to 60% of
the clock period. The same constraining were done
for the outputs of our architectures, by limiting the
output delays also to 60% of the clock period. Both
input and output delay constraints specify how
much time is used by external logic and DC cal-
culates how much time is left for the internal logic
[28]. Concerning load, the maximum primary input
capacitance was set to 10 times a 2-input AND gate
whereas the maximum primary output capacitance
was set to 30 times a 2-input AND gate. Both the
time and load budgets are based on [28].

Area and static power estimates were ob-
tained directly from synthesis. A testbench was
written in Verilog to validate the architecture and
also to obtain the switching activity file (SAIF)
for each synthesized netlist. Prior to simulation, we
have run a modified version of the x264 encoder
with full HD sequence “Pedestrian Area”[29] thus
dumping its pixel block data. To limit simulation
runtime we only simulated 1 million 4 × 4 SATD
calculations for each synthesis case. One specific
handler for each architecture was programmed in
C to interface between the pixel data file and the
Verilog testbench. The SAIF generated after simu-
lation with Synopsys VCS® [30] was further used to
obtain realistic dynamic power estimates.

Fig.10 shows the relative distribution of stat-
ic and dynamic power on total power results, along
with the absolute total power figures. The impact of
dynamic power is larger for maximum throughputs,

Table II. Maximun (Max) and target (Tar) frequencies (MHz)

FHT TE

Tree Tree-4 Transpose Tree Tree-4 Transpose

Max 778.12 2064.52 1273.63 842.1 1954.2 1248.78

Tar 48.08 32.00 95.97 48.08 32.0 95.97

Figure 10. Relative distribution of static and dynamic power on
total power results, for which absolute values are presented for
each synthesis case.

Exploring Optimized Hadamard Methods to Design Energy-Efficient SATD Architectures
Cancellier, Seidel, Brascher, Guntzel & Agostini

120 Journal of Integrated Circuits and Systems 2015; v.10 / n.2:113-122

while the static power is more prominent in both Tree
and Tree-4stages architectures for target throughput.
Fig.11 presents total power for comparison purpos-
es, showing the large total power differences between
maximum and target throughput syntheses.

By using the obtained total power results, we
estimate the energy/SATD, after Equation 14, where
ESATD is the energy for each SATD calculation, Ptot is
the total power, C is the total number of cycles for
each SATD and T is the clock period. Notice that C×T
is the time spent to perform one SATD calculation.
Hence, for the same throughput, C×T is constant.

	 (14)

Fig. 12 presents energy/SATD estimates for the
12 synthesis cases. Let us first analyze the results for
the target throughput. The Tree architecture with TE
method presented approximately 19.2% less energy
consumption when compared to the Tree architecture
with FHT. Once both architectures operate to achieve

the same throughput, power is the only influencing
factor, which is lower in TE-SATD due to its short-
er critical path. A shorter critical path is a key factor
for reducing power in Tree architecture, given its large
number of critical paths to be optimized.

In Tree-4stages architecture the energy dif-
ferences between the two methods is slightly more
prominent: TE method demanded 23.7% less energy
than FHT. A possible explanation to such behavior
would be the positioning chosen for the pipeline reg-
isters, which might have led to excessively long critical
path in FHT, resulting in the selection of faster cells
and consequently, increasing power. A viable work-
around is to allow the synthesis tool to perform re-
timing [31], when DC® moves registers within com-
binational logic gates to optimize time and area [32].
As for Transpose architecture, TE method presented
15% energy reduction when compared to FHT. For
such architecture the transpose buffer plays a major
role in balancing the energy consumption along the
datapath since, according to [33], the transpose buf-
fer can represent a significant part of the power con-
sumed by a 2D transform.

Still concerning target throughput, Tree-4stages
architecture presented higher energy consumption
when comparing the same method. The inclusion of
pipeline registers compromised both static and dy-
namic power, resulting in a higher total power, as can
be seen in Fig.11.

Even presenting the same relative static and
dynamic power distribution as Tree-4stages, Tree ar-
chitecture required less total power, resulting in the
lowest energy.

Let us now analyze the results for maximum
throughput. To compare these cases with each other,
one must remind that the energy variations (calcu-
lated after Eq.14) are now influenced by both power
and SATD calculation time (C ×T). Therefore, all fre-
quencies (1/T) are presented in Tab.II. Unlike all other
synthesis cases, for Tree architecture the FHT method
presented 10.83% less energy than TE. However, its
larger number of long paths led to more optimiza-
tions to meet timing constraints, requiring faster and
thus, more power demanding cells. Combined with
the small achieved maximum throughputs (for both
FHT and TE methods) such optimizations led also
to high energy consumptions: up to 1.56 times more
than any other architecture.

On the other hand, Tree-4stages presented the
lowest energy figures. By applying TE method, such
architecture requires almost 25% less energy than by
applying FHT. Once again, the TB plays a major role
in balancing both methods: Transpose presented the
closest energy estimates between TE and FHT meth-
ods. The former required 11.85% less energy than the
latter.

Figure 11. Absolute power figures. To allow the visualization of
differences between target throughput synthesis cases, we show
them in a different scale. The solid horizontal line shows the
equivalence between scales.

Figure 12. Energy estimates for each architecture. The marks
A, B and C refers to three kinds of comparisons performed,
respectively: method, architecture and throughput.

Exploring Optimized Hadamard Methods to Design Energy-Efficient SATD Architectures
Cancellier, Seidel, Brascher, Guntzel & Agostini

121Journal of Integrated Circuits and Systems 2015; v.10 / n.2:113-122

Thanks to both pipeline and parallelism, Tree-
4stages achieved the highest throughputs. As counter-
part, the achieved throughputs led to the lowest en-
ergy figures among the maximum throughput cases,
even with power results up to 3.56 times higher than
those of the Transpose architecture.

Considering both target and maximum
throughput syntheses, the most energy-efficient case
is the Tree architecture with TE method synthesized
for target frequency. On the other hand, when syn-
thesized for maximum throughput, Tree architecture
presents the worst energy figures. Considering the
cases using TE method, Transpose architecture re-
quires 1.22 times more energy than Tree at target
frequency, whilst at maximum frequency it consumes
near 50% less. By its turn, Tree-4stages requires
more energy than any other architecture for target
frequency, whereas presenting results that are very
close to those of Transpose combined with the TE
method.

Both Tree and Transpose based architectures
present lower energy consumption for target through-
put than for maximum. However, Tree-4stages based
architecture presents lower energy for maximum
throughput syntheses. Basically, the short critical
paths allowed higher frequencies, thus reducing the
impact of the higher power values on the resulting
energy.

Fig. 13 shows the area estimates for the six
designed architectures. All the maximum through-
put syntheses presented larger areas than their target
counterparts. Such was due tighter timing constraints
require faster gates which, by their turn, are also larg-
er. Such increase, in opposition to energy behavior,
cannot be compensated by other factors. Considering
target throughput syntheses, it becomes clear the ef-
fects of parallelism and pipeline: the less parallel archi-
tecture (Transpose) presented smaller area, whilst the
one with most parallelism and pipeline (Tree-4stages)
presented larger areas.

V. CONCLUSIONS

Despite the optimizations applied to the FHT,
such as early parity detection (based on Theorem
1), TE-SATD still presents itself as the best alterna-
tive to implement dedicated hardware to calculate the
Hadamard-based SATD. By merging the last level of
the transform (in the second step) with the first abso-
lute sums (in the third step), the TE-SATD method
can reduce both area and energy consumption. The
only case in which FHT presented better energy esti-
mates than TE was the Tree architecture for maximum
frequency. On the other hand, the TE-SATD method
reveals its greatest advantage on Tree- 4stages synthe-
sized for maximum throughput, by consuming 26.5%
less energy and occupying 19.25% less area than FHT.
In addition, such case presented the lowest energy/
SATD: 13.13 pJ/SATD. However, its area was 2.74
times larger than that the required by the Transpose
architectures which, by their turn, resulted in nearly
20.75 pJ/SATD of energy consumption.

Finally, the best trade-off between energy con-
sumption and area is shown by Transpose architecture.
Also, unlike the results obtained for Tree and Tree-
4stages, those obtained for Transpose were very sim-
ilar for all methods, with TE featuring an area reduc-
tion of 9.8% and 15.05% less energy per block when
compared to FHT. Such convergence between the two
methods when using the transpose architecture is due
to two reasons: less parallelism (fewer instances of the
method block) and dominance of the transpose buffer
on the overall required logic.

ACKNOWLEDGEMENTS

This work was partially supported by the
Brazilian Federal Agency for the Support and
Evaluation of Graduate Education (CAPES) and by
the Brazilian Council for Scientific and Technological
Development (CNPq).

REFERENCES

[1]	 F. Bossen, B. Bross, K. Suhring, and D. Flynn, “Hevc com-
plexity and implementation analysis,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1685–1696, 2012.

[2] I. Chakrabarti, K. Batta, and S. Chatterjee, Motion Estimation
for Video Coding: Efficient Algorithms and Architectures, ser.
Studies in Computational Intelligence. Springer International
Publishing, 2015.

[3]		 I. E. Richardson, The H.264 Advanced Video Compression
Standard, Second Edition. John Wiley & Sons Ltd, 2010.

[4]	 ITU-T, “H.264 corrigendum 1,” jan 2009. Figure 13. Area results for all synthesis cases.

Exploring Optimized Hadamard Methods to Design Energy-Efficient SATD Architectures
Cancellier, Seidel, Brascher, Guntzel & Agostini

122 Journal of Integrated Circuits and Systems 2015; v.10 / n.2:113-122

[5]	 Y.-W. Huang, B.-Y. Hsieh, T.-C. Chen, and L.-G. Chen,
“Analysis, fast algorithm, and vlsi architecture design for
h.264/avc intra frame coder,” IEEE Trans. Circuits Syst.
Video Technol., vol. 15, no. 3, pp. 378–401, March 2005.

[6]	 JVT, “Jm joint video team reference software,” 2011. [Online].
Available: http://iphome.hhi.de/suehring/tml/

[7]	 W. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform
image coding,” Proceedings of the IEEE, vol. 57, no. 1, pp.
58–68, Jan 1969.

[8]	 L.-M. Po and K. Guo, “Transform-domain fast sum of the
squared difference computation for h.264/avc rate-distortion
optimization,” IEEE Trans. Circuits Syst. Video Technol., vol.
17, no. 6, pp. 765–773, 2007.

[9]	 J. S. Dominges Jr, V. N. Possani, D. S. Silveira, L. S. da
Rosa Jr, and L. V. Agostini, “High throughput 4×4 and 8×8
satd similarity criteria architectures for video coding applica-
tions,” in 2011 VII Designer Forum (DF), 2011, p. 115.

[10]	 C. Zhu and B. Xiong, “Transform-exempted calculation of
sum of absolute hadamard transformed differences,” IEEE
Trans. Circuits Syst. Video Technol., vol. 19, no. 8, pp. 1183–
1188, 2009.

[11]	 H. M. Wang, C.-H. Tseng, and J. F. Yang, “Computation
reduction for intra 4×4 mode decision with satd criterion in
h.264/avc,” Signal Processing, IET, vol. 1, no. 3, pp. 121–
127, September 2007.

[12]	 J. Kim and J. Jeong, “Fast intra mode decision algorithm us-
ing the sum of absolute transformed differences,” in Digital
Image Computing Techniques and Applications (DICTA),
2011 International Conference on, Dec 2011, pp. 655–659.

[13]	 T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the h.264/avc video coding standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 560–
576, July 2003.

[14]	 ITU-T, “Recommendation itu-t h.265: High efficiency video
coding,” International Telecommunication Union, Geneva,
Recommendation H.265, 2013.

[15]	 G. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview
of the high efficiency video coding (HEVC) standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp.
1649–1668, dez 2012.

[16]	 M. Porto, T. da Silva, R. Porto, L. Agostini, I. da Silva, and S.
Bampi, “Design space exploration on the H.264 4×4 hadam-
ard transform,” in NORCHIP Conference, 2005. 23rd, Nov
2005, pp. 188–191.

[17]	 T.-C. Wang, Y.-W. Huang, H.-C. Fang, and L.-G. Chen,
“Parallel 4×4 2d transform and inverse transform archi-
tecture for mpeg-4 avc/h.264,” in Circuits and Systems,
2003. ISCAS ’03. Proceedings of the 2003 International
Symposium on, vol. 2, May 2003, pp. II–800–II–803 vol.2.

[18]	 L. H. Cancellier, A. B. Bräscher, I. Seidel, and J. L. Güntzel,
“Energyefficient hadamard-based satd architectures,” in
Proceedings of the 27th Symposium on Integrated Circuits
and Systems Design, ser. SBCCI ’14. New York, NY, USA:
ACM, 2014, pp. 36:1–36:6.

[19]	 F. Jou, “Method for fast satd estimation,” Sep. 28 2010, US
Patent 7,804,900. [Online]. Available: http://www.google.
com/patents/US7804900.

[20]	 C.-P. Fan and J.-F. Yang, “Fast center weighted hadamard
transform algorithms,” IEEE Trans. Circuits Syst. II, vol. 45,
no. 3, pp. 429–432, Mar 1998.

[21]	 ——, “Fixed-pipeline two-dimensional hadamard transform
algorithms,” IEEE Trans. Signal Process., vol. 45, no. 6, pp.
1669–1674, Jun 1997.

[22]	 H. Zhang and Z. Ma, “Fast intra prediction for high efficien-
cy video coding,” in Advances in Multimedia Information
Processing – PCM 2012, ser. Lecture Notes in Computer
Science, W. Lin, D. Xu, A. Ho, J. Wu, Y. He, J. Cai, M.
Kankanhalli, and M.-T. Sun, Eds. Springer Berlin Heidelberg,
2012, vol. 7674, pp. 568–577.

[23]	 JCT-VC, “Hevc test model,” 2013. [Online]. Available: http://
hevc.hhi.fraunhofer.de/

[24]	 V. d. S. Livramento, B. G. Moraes, B. A. Machado, E.
Boabaid, and J. L. Güntzel, “Evaluating the impact of archi-
tectural decisions on the energy efficiency of fdct/idct config-
urable ip cores,” Journal of Integrated Circuits and Systems,
vol. 7, no. 1, pp. 23–36, 2012.

[25]	 Synopsys, “Synopsys design compiler, version f-2011.09-
sp5-2.” 2011.

[26]	 TSMC STANDARD CELL Library TCBN45GSBWPTC,
TSMC, 2011.

[27]	 F. Walter, C. Diniz, and S. Bampi, “Synthesis and compari-
son of low-power high-throughput architectures for sad cal-
culation,” Analog Integrated Circuits and Signal Processing,
vol. 73, no. 3, pp. 873–884, 2012.

[28] Synopsys R , “Design Compiler 1 Workshop – Student Guide,”
Synopsys R Custumer Education Services, Workshop, 2010.

[29]	 Xiph.org, “Xiph.org test media repository,” 2011. [Online].
Available: http://media.xiph.org/

[30]	 Synopsys, “Synopsys vcs, version g-2012.09.” 2012.

[31]	 N. Shenoy, “Retiming: Theory and practice,” Integr. VLSI J.,
vol. 22, no. 1-2, pp. 1–21, Aug. 1997.

[32]	 Synopsys, Synopsys’s Design Compiler User Guide, Version
I-2013.12- SP4., 2014.

[33]	 R. Rithe, C.-C. Cheng, and A. Chandrakasan, “Quad full-hd
transform engine for dual-standard low-power video coding,”
in Solid State Circuits Conference (A-SSCC), 2011 IEEE
Asian, Nov 2011, pp. 401–404.

