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ABSTRACT

State-of-the-art video coding tools are submitted to severe performance and energy consumption requirements 
resulting from high complexity of video standards and from limited energy budgets of portable mobile devices. 
While providing most of the compression gains, inter frame and intra frame prediction techniques are the most 
demanding steps, since they compare a huge number of blocks. In such a process, the similarity metric employed 
affects both the quality of compression and the calculation effort. In this paper we propose the use of Hadamard-
based Sum of Absolute Transformed Differences (SATD), in replacement of the traditionally used Sum of Absolute 
Differences (SAD), as a means of improving the efficiency of video coding. To allow that we explore two Hadamard 
Transform methods to design efficient SATD architectures, one using the Fast Hadamard Transform (FHT) but-
terfly and another one using the so-called Transform-Exempted (TE) SATD algorithm. Those methods were com-
bined with architectural decisions (full parallelism, full parallelism with pipelining or multi-cycling) to build a total 
of six Hadamard-based SATD architectures that were synthesized for a commercial 45nm standard cell library 
for two operating frequencies. The architectures were simulated with pixel block data to obtain realistic dynamic 
power and energy estimates. The TE-SATD architectures achieved the lowest energy results: down to 13.13 pJ/
SATD in the case of parallel architecture with pipeline. However, considering also the area results when evalu-
ating energy, the best results are given by both methods using multi-cycling (transpose buffer): nearly 20.75 pJ/
SATD with up to 63.54% smaller area compared with fully parallel architectures.

Index Terms: Video Coding; VLSI Design; Sum of Absolute Transformed Differences; Hadamard; Energy 
Efficiency.

I. INTRODUCTION

In current video coding (VC) standards, in-
ter frame and intra frame prediction techniques are 
the main responsible for the high compression rates 
achieved. The former technique explores temporal 
redundancies between frames, being one of the most 
time demanding video coding tasks [1]. The latter 
technique explores spatial redundancies of the already 
coded blocks from the current frame. A block is a 
sub-division of the frame (i.e., a sub-matrix of pixels) 
which is used to facilitate the various coding tasks. The 
allowed sizes for the blocks (e.g., 16×8, 8×16, 8×8, 
4×4) are defined within each video coding standard. 
In the video coder tool-chain of Fig. 1 it is possible 
to observe that after selecting a block that best match-
es with the one being coded (considering both inter 
and intra frame prediction), the coder computes the 
residues (D), which are the differences pixel-to-pixel 
between two similar  blocks.

The residues are then transformed (T) and quan-
tized (Q). The block selection referred to in the pre-
vious paragraph is performed by the Block Matching 
Algorithm (BMA) [2]. Basically, its task can be stated 
as follows: for each M × N sized block being coded 
(OM×N) choose, among the several available candidate 

Figure 1. Main tools of the H.264/AVC [4] flow. Inter prediction 
is presented by the Motion Estimation (ME) and Motion 
Compensation (MC) blocks. The transform and quantization 
steps are respectively shown by T and Q blocks.
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blocks (CM×N), the one that minimizes the similarity 
metric to use as reference (RM×N). Due to its simplicity, 
the most used similarity metric is the Sum of Absolute 
Differences (SAD) [3]. It is calculated as: 

	
(1)

where dij ∈ D’M×N = OM×N − CM×N. 

Although for most applications SAD provides 
an acceptable coding efficiency, more elaborated met-
rics are required to help improving compression effi-
ciency for current and next generation high definition 
video standards. Unfortunately, dedicated hardware 
architectures to implement such metrics are more 
complex than those generally used to calculate the 
SAD, resulting in silicon area and power consumption 
overheads. Therefore, it is essential to optimize their 
computation so as to reduce as much as possible those 
overheads, thus making viable their adoption. Aside 
the SAD, the most well-known similarity metrics are 
the Sum of Squared Differences (SSD) and the Sum 
of Absolute Transformed Differences (SATD) [3]. In 
SSD the square operation is employed to give more 
weight for larger differences than for smaller ones, 
which results in coding efficiency increase. Area and 
power consumption overheads come from the square 
operation. SATD, by its turn, is able to provide even 
higher coding efficiency because it correlates better 
with the transform step, which will be explained in the 
sequel. 

The SATD is defined as:

	 (2)

where c ∈ R*
+ is a scaling constant and tdij ∈ TD is a 

2-D transformed differences block, calculated by:

	 (3)

In Equation 3, T represents the transformation 
matrix of an integer linear transform. In some works, 
such as [5], the transformation matrix of the integer 
Discrete Cosine Transform (DCT) is used. However, it 
is more likely to find the Walsh-Hadamard Transform 
(or Hadamard Transform, for shortly) matrix, as in 
the H.264/AVC reference software (JM) [6]. The re-
cursive definition of Hadamard matrix (H), with size 
2n×2n such that ∀n, ∃k ≥ 0 | n = 2k , is:

	  (4)

where ⊗ is the Kronecker product and H2×2 is the low-
est order Hadamard matrix [7], given by: 

	 (5)

Fig. 2 illustrates how to obtain the Hadamard 
matrix H8×8 by using the given recursive definition. 

The benefits of using Hadamard-based SATD 
comes from its correlation with the DCT, the most 
commonly used transform in step T. Such correlation 
allows reducing the quantization (Q) error. As it can 
be seen in Fig. 1, the transform (T) is applied on the 
residue matrix (D), which is calculated by:

 	
	 (6)

where (O) is the block being coded and (R) is a refer-
ence block chosen by the BMA (using a given similari-
ty metric) from either the intra or the inter prediction. 
The coefficients resulting from the transform are then 
quantized (Q). This way, the use of a similarity metric 
that emulates the behavior of the transform step in-
creases the correlation between prediction and its effect 
on quantization, thus reducing the generated error. 

In short, the Hadamard-based SATD differ-
ences matrix (D’) calculation, 2) the 2-D transformed 
differences block computation requires the following 
three steps: 1) the (TD) calculation and 3) the sum 
expressed in Equation 2. 

For 4×4 pixel blocks, which is the block size of 
interest for this work, the differences matrix D’4×4 is 
obtained through the subtraction between the original 

Figure 2.  Recursive calculation of the H matrix for n = 8. Filled shapes 
represents −1, while blank ones represents 1. Notice that the 
shapes are kept according to Kronecker product (⊗).  
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block (O4×4) and a candidate block (C4×4). The 2-D 
transformed differences block (TD) is calculated by us-
ing Equation 3, assuming as T the 4 × 4 Hadamard 
matrix, which is defined as: 

	 (7)

Finally, the sum of Equation 2 becomes: 
 

	 (8)

As will be shown after Theorem 1, the 1/2 scal-
ing factor does not reduce the SATD precision because 
the less significant bit of the resulting value (without 
scaling) will always be zero. 

As expressed in Equation 3, the considered 4 
× 4 SATD requires a 2-D Hadamard transform on 
a residue matrix, which is computed by two matrix 
multiplications. Those matrix multiplications are the 
main responsible for the area and power consumption 
overhead with respect to both SAD and SSD. On the 
other hand, both quality and compression rates result-
ing from using SATD are better than those resulting 
from SAD and SSD [8], [9] because, considering 
4×4 blocks, two among four base functions of H4×4 
(Equation 7) are the same as for the integer DCT4×4 
used in H.264/AVC [4], [10]. Therefore, the SATD 
is well accepted for intra prediction [11], [12], once 
the number of candidate blocks is far less than that for 
inter prediction. For instance, there are only nine 4 × 
4 intra candidates in H.264/AVC [4], [13]. However, 
in HEVC [14] there are 34 candidates in intra 4 × 4 
[15]. Such increase in the number of candidates, even 
for intra prediction, along with the larger number of 
blocks caused by the adoption of larger resolutions 
(e.g. 2K and 4K), encourages the adoption of more 
efficient similarity metrics. 

In [16], the authors explore the Hadamard 
separability property, using two RAMs to store inter-
mediary transform results. The lines and columns are 
transposed by a so-called “ping-pong” buffer, emulat-
ing a transpose buffer as defined in [17]. Also in [16], 
the pipeline depth and its positioning are explored to 
build fully parallel Hadamard transform architectures. 
Unlike these, some works on SATD do not apply the 
separability property of the Hadamard Transform. This 
is the case of [9], where the authors use 2-D transform 
blocks. To the best of our knowledge, none of the pub-
lications on the TE-SATD method present hardware 
architectures, while [10] simply evaluated the number 
of saved operations in relation to the MMB and FHT 
methods. In our previous work [18] we analyzed the 
area and energy of some Hadamard-based SATD ar-
chitectures.

In this paper, we explore two methods to cal-
culate the 4×4 Hadamard Transform, aiming the de-
sign of efficient SATD dedicated architectures. One 
method is based on the Fast Hadamard Transform 
(FHT) whereas the other one combines the FHT it-
self with the Transform Exempted (TE) method [10], 
[19]. The main contribution of this paper is a thor-
ough evaluation of six SATD architectures that were 
designed by combining the two Hadamard Transform 
methods with three micro-architecture options (fully 
parallel, fully parallel with pipelining or multi-cycling 
with a transpose buffer). Each of these six architectures 
were synthesized for a 45nm commercial standard cell 
library for two target frequencies, totalizing twelve 
versions of architectures. Those twelve versions were 
evaluated and compared using the following figures of 
merit: dynamic and leakage power, energy and silicon 
area. 

The main improvements of this paper are the 
power and energy analysis by considering more accu-
rate switching activities, obtained through simulation 
using realistic stimuli.

This paper is organized as follows. Section II 
details the FHT-based and TE-SATD methods. The 
six designed architectures are presented in Section III. 
Section IV presents the synthesis and simulation set-
up as well as area, power and energy estimates. It also 
establishes comparisons between twelve versions of ar-
chitectures. Conclusions are drawn in Section V.

II. HADAMARD-BASED SATD

To achieve efficient hardware architectures for 
the Hadamard-Based SATD one must, first of all, op-
timize the calculation method itself. Then, design deci-
sions must be taken so as to take benefit of the particu-
lar features of the optimized calculation method. 

Among the three steps required to compute 
the HadamardBased SATD, the second one (the 2-D 
transformed differences block calculation) is the most 
complex and also the responsible for the area and 
power consumption overhead with respect to SAD. 
Therefore, special attention must be given to its real-
ization. 

Two matrix multiplications are needed to cal-
culate the transformed differences matrix of order n, 
TDn×n (Equation 3). A naïve method to accomplish 
this would be to use the ordinary matrix multiplication 
algorithm, which is O(n3). Nevertheless n is always a 
small number, the number of multiplications and ad-
ditions required is large (e.g., for n = 4, 2n3 = 128 
multiplications and 2n3 −2n2 = 96 additions). On the 
other hand, since the H matrix is composed only of 
+1 and −1, a straightforward solution to minimize the 
number of operations relies on computing the trans-
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form using only additions and subtractions. In such 
case, for n = 4 only 96 additions are needed. Finally, 
the last step (i.e., the sum in Equation 2) is performed 
by n2 absolute operations and n2−1 additions. For n = 
4 the second and third steps of SATD require 16 abso-
lute operations and 111 additions. Hereinafter, we will 
refer to this method as Matrix Multiplication-Based 
SATD, or MMB-SATD for short. 

A more efficient method to compute the sec-
ond step relies on using the so-called Fast Hadamard 
Transform (FHT) [20]. Basically, it breaks recursive-
ly a Hadamard matrix Hn×n into two smaller matrices 
Hn/2×n/2, resulting in a 

complexity of O(n2logn). Such optimization 
is made possible by the separability property of the 
Hadamard Transform, which allows to apply two 1-D 
transforms on the lines and columns of a given dif-
ferences matrix [16]. Each 1-D FHT operation, for a 
single column or row, can be represented by a butterfly, 
as the one in Fig. 3. The butterfly can be interpreted 
as a map function defined over a given  to another  

. Especially in the case of a 4 × 4 Hadamard, it is 
defined as  (x1, x2, x3, x4)  (t1, t2, t3, t4) as follows:

	 (9)

Each butterfly requires nlogn additions and is 
executed 2n times, resulting in a total of 2n2logn ad-
ditions. For n = 4, 64 additions are needed which is 
33% less than in the MMB-SATD method. That is 
why the FHT is the method of choice to compute the 
Hadamard transform in many works (e.g. [21], [17], 
[16]), including the Hadamard-based SATD [9]. As in 
the MMB-SATD method, the last step requires n 2 ab-
solute operations and n2 − 1 additions. Hence, for n = 
4 the second and third steps of the FHT-SATD requires 
16 absolute operations and 79 additions, which is near-
ly 25% less additions than the MMB-SATD method.

The third method considered in this paper is 
called Transform-Exempted (TE) SATD [10], [19]. 
By using the FHT, it combines the second and third 
steps of the Hadamard-Based SATD by absorbing part 
of the absolute sum into the second 1-D butterfly step 
of the FHT. By doing so, it achieves 38% and 17% of 
operation reductions for computing a 4×4 SATD in 
comparison to MMB and FHT-based methods, respec-
tively. Such algorithm relies on the following property, 
proved in [10]:

Property 1.

	 (10)

To demonstrate the TE-SATD, Equation 9 can 
be re-written as:

	 (11)

As mentioned before,  is a 1-D FHT trans-
formed vector. Hence, it can be seen as the result of the 
second 1-D transform. By such definition, let every tij 
be one element tj ∈ T from a line i of TD. Thereby, 
replacing tj by its form in the last factor of Equation 
11, Equation 8 can also be re-written as:

	

(12)

By applying Property 1 to Equation 12, the fol-
lowing holds:

	 (13)

Therefore, instead of calculating the second but-
terfly (which requires n2log2n additions) and n2 − 1 
additions for the third step, the TE-SATD method re-
quires only n2 + n additions, n2/4 maximum values and 
n additions to perform the addition within the paren-
thesis in Equation 13 and n2/4 − 1 additions for the 
third step. For n = 4, TE-SATD requires only 55 addi-
tions, 8 maximum values and 16 absolute operations. 

Table I summarizes the number of operations 
for the three presented SATD methods. Despite the 
absolute operation takes a similar time than the addi-
tion, the former is not considered in Table I since all 
three methods require the same number of absolute 
operations. For the same reason, Table I does not in-
clude the subtractions required in the first step of the 
three methods.

Among the three previously described meth-
ods, the FHT and TE are the ones requiring the least 
amount of operations. For such reason, they were se-
lected as the starting point to investigate energy-effi-
cient SATD architectural implementations. The main 
difference between those two methods relies on the 
second 1-D transform step and on the sum depth. 

Table  I. Number of Operations for SATD algorithms – Additions 
(A) and Maximum Values (M)

Method n n = 4
MMB-SATD 2n3 –n2 –1A 111A
FHT-SATD (2log2n+1)n2 –1A 79A
TE-SATD (log2n +5/4)n2+n–1A+(n2/2)M 55A + 8M
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Fig. 4 shows the designed datapath for the 
second step of FHT. The T block represents a 1-D 
FHT butterfly, and performs the operations shown in 
Equation 9 (Fig. 3). The shift right operations are con-
sequence of the following theorem:

Theorem 1. All elements of   have the same parity.
∀ti , tj ∈ , ti is even ⇔ tj is even

Proof: Let every tj ∈  be written as (x1±x-
2)±(x3±x4) (Equation 9). Since the parity is the same 
for addition as for subtraction, it follows that the parity 
of all tj ∈  are the same.	  ■

Since all transformed values have the same pari-
ty, the result of adding two of them together is always 
even i.e., the least significant bit (LSB) is 0. Therefore, 
no loss is introduced if those values are divided by two 
after they are added together. In this case, the final 
division by two (constant c = 1/2 in Equation 8) is 
performed earlier, while maintaining the originally de-
fined range. 

The datapath for the TE-SATD algorithm is 
shown in Fig. 5. Basically it operates as defined in 
Property 1, except that the multiplication by two is 
not performed because it was canceled by the scaling 
factor in SATD definition (see Equation 13). It is also 

possible to observe the absence of the T block and the 
reordering of the TE-SATD inputs, reflecting the orga-
nization presented in Equation 12. 

The two presented datapaths were combined 
with each one of the three base architectures described 
in the next section, giving rise to six Hadamard-based 
SATD architectures.

III. BASE ARCHITECTURES

Half of the six Hadamard-based 4×4 SATD ar-
chitectures are based on the Fast Hadamard Transform 
(FHT) whereas the other half use a combination of 
the FHT with the Transform Exempted (TE) meth-
od. Unlike most correlated works, power and energy 
assessments assume a realistic framework in which the 
architectures were simulated with input stimuli gener-
ated from a real HD video sequence. 

Although the HEVC standard defines 
Prediction Units (PUs) that are larger than 4×4, many 
VC works use small block sizes. Thus, we believe that 
the design and evaluation of 4×4 SATD is still a valid 
concern. A recent application example supporting our 
claim is the Fast Intra Prediction Algorithm proposed 
by [22], where 4×4 and 2×2 block. based Hadamard 
transforms are used instead of the original 8×8 and 
4×4 based transforms of the HEVC reference software 
(HM) [23]. In this section we present the base archi-
tectures to compute the three steps in both FHT-SATD 
and TE-SATD. 

The so-called “Tree” architecture, shown in Fig. 
6, is fully parallel. As first step, it performs 16 sub-
tractions between two 4 × 4 pixel blocks and then 

Figure 4. Fig.  4 Fast Hadamard Transform (FHT) method block 
(M) datapath for the second 1-D FHT along with the sum of 
absolute transformed values of one row or column.

Figure 5. Transform-Exempted (TE method block (M) datapath 
which takes four inputs already transformed by one 1-D FHT

Figure 6. Datapath of Tree and Tree-4stages architectures. 
The M blocks represent the method blocks, which can be either 
the FHT block presented in Fig. 4 or the TE block presented in 
Fig. 5. The straight dashed lines represent registers: the Tree 
architecture has only input and output registers, whereas the 
Tree-4stages architecture has pipeline registers (intermediate 
straight dashed lines).
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The third architecture, called “Transpose”, 
adopts the transpose buffer (TB) shown in Fig. 8, 
which is similar to the ones presented in [17] and 
[24]. The Transpose architecture utilizes only one T 
block and one method block, connected together by 
the TB, as shown in Fig. 9. It also uses four subtractors 
to generate the differences matrix and one accumulator 
to perform the final sum. The Transpose FSM is pre-
sented in Fig. 7c. In state H1, the transpose buffer is 
fed line by line with the 1-D transformed 

performs in parallel four 1-D FHT (T blocks) on the 
resulting differences. Hence, the connections between 
the T blocks and the method blocks (M blocks in Fig. 
6) implement the matrix transposition. The next step 
is performed by the method block, which can be either 
the FHT (Fig. 4) or the TE (Fig. 5). The remaining 
sums of the third step of the SATD calculation is per-
formed by summing together all four transformed lines 
(outputs marked as “m” in the method blocks). Such 
parallel base architecture allows to perform the 4×4 
SATD calculation in a single clock cycle. However, it is 
important to notice that the Tree architecture requires 
a large adder tree, resulting in a long critical path. The 
Finite State Machine (FSM) to control the Tree archi-
tecture has three states as presented in Fig. 7a. The 
SATD computation takes place in state CALC, where-
as the other two states are used for synchronization. 

The “Tree-4stages” architecture was designed 
looking for reducing the clock cycle through the ad-
dition of pipeline registers to the Tree architecture, as 
represented by the dashed vertical lines in Fig. 6. It is 
interesting to observe that even the four method blocks 
are crossed by a pipeline register. The pipeline register 
positions were fixed prior to synthesis. The control of 
the Tree-4stages architecture uses a similar FSM (Fig. 
7b) as the one used by the Tree architecture, except 
that for each pipeline stage the pair CALC–DONE is 
executed.

Figure 7. Finite State Machines (FSMs) used for controlling the base 
architectures.

Figure 8.  Transpose Buffer (TB) design and its storage cells (C). The 
writing/reading direction of the transpose buffer is controlled by 
the MSBof one 3-bit counter.

Figure 9. Datapath of Transposed 2T architecture. Input and 
output registers  are represented by straight dashed lines. The M 
block is the method block. The T block is a 1-D FHT transform and 
performs the operations shown in Fig. 3. The transpose buffer 
(TB) is detailed in Fig. 8.
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differences. After four clock cycles in state H1, 
the FSM moves to H2 state. In H2 the TB dispatch-
es the received results to the method block column by 
column during the next four cycles, while receives new 
arriving data column by column. After that, the FSM 
moves to DONE state and the first SATD is comput-
ed. Its worth noting that this architecture has a latency 
of eight clock cycles: four cycles in H1 state and four 
cycles in H2 state. When ready to proceed, the com-
puted SATD is cleared in state RSUM. From this point 
on, a new SATD is computed after every four clock 
cycles in state H2.

IV. RESULTS

Six Hadamard-based SATD architectures were 
devised by replacing the M blocks in each of the three 
architectures detailed in Section III (Tree, Tree-4stages 
and Transpose) by either FHT-SATD or TE-SATD 
methods presented in Section II. The six architec-
tures were then described in Verilog and synthesized 
with Synopsys R Design Compiler (DC R ) [25] in 
Topographical mode for nominal voltage (0.7V) 45 
nm TSMC [26] standard cell library for two operation 
frequencies, one for target throughput and another for 
maximum, resulting in a total of 12 cases. The target 
throughput is the same one as assumed in [27] for 
SAD: 16 million 4×4 blocks/s which, according to 
the authors, is required for coding a 1080p video sam-
ple at 30 fps. 

Table II lists the maximum achieved frequen-
cies and the required target frequencies for all syn-
thesis cases. The listed maximum frequencies are the 
maximum ones for which the synthesis tool could 
meet the timing constraints. However, notice that 
reaching such high frequencies only allows for eval-
uating the maximum throughput allowed by the 
architecture itself when combined to the used stan-
dard cell library, which is dependent on the size and 
number of critical paths (architecture) and the pos-
sible cells to use in 

such paths (library). Furthermore, such high 
frequencies can be required in the case of using larger 
spatial or temporal resolutions (larger frame sizes and 
higher number of frames per second, respectively).

Because our architectures were designed iso-
lated from any surrounding BMA architecture, there 
is no insurance on the devices that will drive the 
SATD architectures’ inputs, nor the ones that will 
be driven by our architectures. Therefore, one good 
practice is to create both time and load budgets [8]. 
Concerning time, we took into account the latest 
data arrival time in all devised architectures’ inputs 
by conservatively limit the input delay to 60% of 
the clock period. The same constraining were done 
for the outputs of our architectures, by limiting the 
output delays also to 60% of the clock period. Both 
input and output delay constraints specify how 
much time is used by external logic and DC cal-
culates how much time is left for the internal logic 
[28]. Concerning load, the maximum primary input 
capacitance was set to 10 times a 2-input AND gate 
whereas the maximum primary output capacitance 
was set to 30 times a 2-input AND gate. Both the 
time and load budgets are based on [28].

Area and static power estimates were ob-
tained directly from synthesis. A testbench was 
written in Verilog to validate the architecture and 
also to obtain the switching  activity file (SAIF) 
for each synthesized netlist. Prior to simulation, we 
have run a modified version of the x264 encoder 
with full HD sequence “Pedestrian Area”[29] thus 
dumping its pixel block data. To limit simulation 
runtime we only simulated 1 million 4 × 4 SATD 
calculations for each synthesis case. One specific 
handler for each architecture was programmed in 
C to interface between the pixel data file and the 
Verilog testbench. The SAIF generated after simu-
lation with Synopsys VCS® [30] was further used to 
obtain realistic dynamic power estimates. 

Fig.10 shows the relative distribution of stat-
ic and dynamic power on total power results, along 
with the absolute total power figures. The impact of 
dynamic power is larger for maximum throughputs, 

Table  II. Maximun (Max) and target (Tar) frequencies (MHz)

FHT TE

Tree Tree-4 Transpose Tree Tree-4 Transpose

Max 778.12 2064.52 1273.63 842.1 1954.2 1248.78

Tar 48.08 32.00 95.97 48.08 32.0 95.97

Figure 10. Relative distribution of static and dynamic power on 
total power results, for which absolute values are presented for 
each synthesis case.
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while the static power is more prominent in both Tree 
and Tree-4stages architectures for target throughput. 
Fig.11 presents total power for comparison purpos-
es, showing the large total power differences between 
maximum and target throughput syntheses. 

By using the obtained total power results, we 
estimate the energy/SATD, after Equation 14, where 
ESATD is the energy for each SATD calculation, Ptot is 
the total power, C is the total number of cycles for 
each SATD and T is the clock period. Notice that C×T 
is the time spent to perform one SATD calculation. 
Hence, for the same throughput, C×T is constant. 

	 (14)

Fig. 12 presents energy/SATD estimates for the 
12 synthesis cases. Let us first analyze the results for 
the target throughput. The Tree architecture with TE 
method presented approximately 19.2% less energy 
consumption when compared to the Tree architecture 
with FHT. Once both architectures operate to achieve 

the same throughput, power is the only influencing 
factor, which is lower in TE-SATD due to its short-
er critical path. A shorter critical path is a key factor 
for reducing power in Tree architecture, given its large 
number of critical paths to be optimized. 

In Tree-4stages architecture the energy dif-
ferences between the two methods is slightly more 
prominent: TE method demanded 23.7% less energy 
than FHT. A possible explanation to such behavior 
would be the positioning chosen for the pipeline reg-
isters, which might have led to excessively long critical 
path in FHT, resulting in the selection of faster cells 
and consequently, increasing power. A viable work-
around is to allow the synthesis tool to perform re-
timing [31], when DC® moves registers within com-
binational logic gates to optimize time and area [32]. 
As for Transpose architecture, TE method presented 
15% energy reduction when compared to FHT. For 
such architecture the transpose buffer plays a major 
role in balancing the energy consumption along the 
datapath since, according to [33], the transpose buf-
fer can represent a significant part of the power con-
sumed by a 2D transform. 

Still concerning target throughput, Tree-4stages 
architecture presented higher energy consumption 
when comparing the same method. The inclusion of 
pipeline registers compromised both static and dy-
namic power, resulting in a higher total power, as can 
be seen in Fig.11. 

Even presenting the same relative static and 
dynamic power distribution as Tree-4stages, Tree ar-
chitecture required less total power, resulting in the 
lowest energy.

Let us now analyze the results for maximum 
throughput. To compare these cases with each other, 
one must remind that the energy variations (calcu-
lated after Eq.14) are now influenced by both power 
and SATD calculation time (C ×T). Therefore, all fre-
quencies (1/T) are presented in Tab.II. Unlike all other 
synthesis cases, for Tree architecture the FHT method 
presented 10.83% less energy than TE. However, its 
larger number of long paths led to more optimiza-
tions to meet timing constraints, requiring faster and 
thus, more power demanding cells. Combined with 
the small achieved maximum throughputs (for both 
FHT and TE methods) such optimizations led also 
to high energy consumptions: up to 1.56 times more 
than any other architecture. 

On the other hand, Tree-4stages presented the 
lowest energy figures. By applying TE method, such 
architecture requires almost 25% less energy than by 
applying FHT. Once again, the TB plays a major role 
in balancing both methods: Transpose presented the 
closest energy estimates between TE and FHT meth-
ods. The former required 11.85% less energy than the 
latter. 

Figure 11. Absolute power figures. To allow the visualization of 
differences between target throughput synthesis cases, we show 
them in a different scale. The solid horizontal line shows the 
equivalence between scales.

Figure 12. Energy estimates for each architecture. The marks 
A, B and C refers to three kinds of comparisons performed, 
respectively: method, architecture and throughput.
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Thanks to both pipeline and parallelism, Tree-
4stages achieved the highest throughputs. As counter-
part, the achieved throughputs led to the lowest en-
ergy figures among the maximum throughput cases, 
even with power results up to 3.56 times higher than 
those of the Transpose architecture. 

Considering both target and maximum 
throughput syntheses, the most energy-efficient case 
is the Tree architecture with TE method synthesized 
for target frequency. On the other hand, when syn-
thesized for maximum throughput, Tree architecture 
presents the worst energy figures. Considering the 
cases using TE method, Transpose architecture re-
quires 1.22 times more energy than Tree at target 
frequency, whilst at maximum frequency it consumes 
near 50% less. By its turn, Tree-4stages requires 
more energy than any other architecture for target 
frequency, whereas presenting results that are very 
close to those of Transpose combined with the TE 
method. 

Both Tree and Transpose based architectures 
present lower energy consumption for target through-
put than for maximum. However, Tree-4stages based 
architecture presents lower energy for maximum 
throughput syntheses. Basically, the short critical 
paths allowed higher frequencies, thus reducing the 
impact of the higher power values on the resulting 
energy.

Fig. 13 shows the area estimates for the six 
designed architectures. All the maximum through-
put syntheses presented larger areas than their target 
counterparts. Such was due tighter timing constraints 
require faster gates which, by their turn, are also larg-
er. Such increase, in opposition to energy behavior, 
cannot be compensated by other factors. Considering 
target throughput syntheses, it becomes clear the ef-
fects of parallelism and pipeline: the less parallel archi-
tecture (Transpose) presented smaller area, whilst the 
one with most parallelism and pipeline (Tree-4stages) 
presented larger areas.

V. CONCLUSIONS

Despite the optimizations applied to the FHT, 
such as early parity detection (based on Theorem 
1), TE-SATD still presents itself as the best alterna-
tive to implement dedicated hardware to calculate the 
Hadamard-based SATD. By merging the last level of 
the transform (in the second step) with the first abso-
lute sums (in the third step), the TE-SATD method 
can reduce both area and energy consumption. The 
only case in which FHT presented better energy esti-
mates than TE was the Tree architecture for maximum 
frequency. On the other hand, the TE-SATD method 
reveals its greatest advantage on Tree- 4stages synthe-
sized for maximum throughput, by consuming 26.5% 
less energy and occupying 19.25% less area than FHT. 
In addition, such case presented the lowest energy/
SATD: 13.13 pJ/SATD. However, its area was 2.74 
times larger than that the required by the Transpose 
architectures which, by their turn, resulted in nearly 
20.75 pJ/SATD of energy consumption. 

Finally, the best trade-off between energy con-
sumption and area is shown by Transpose architecture. 
Also, unlike the results obtained for Tree and Tree-
4stages, those obtained for Transpose were very sim-
ilar for all methods, with TE featuring an area reduc-
tion of 9.8% and 15.05% less energy per block when 
compared to FHT. Such convergence between the two 
methods when using the transpose architecture is due 
to two reasons: less parallelism (fewer instances of the 
method block) and dominance of the transpose buffer 
on the overall required logic.
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