
174 Journal of Integrated Circuits and Systems 2015; v.10 / n.3:174-180

A Synthesizable BCH Decoder
For DVB-S2 Satellite Communications

Cesar G. Chaves, Eduardo R. de Lima and Jacqueline G. Mertes

Department of Hardware Design, Eldorado Research Institute, Campinas, Brasil
e-mail: cesar.arroyave@eldorado.org.br

ABSTRACT

This paper presents the design of a BCH Decoder for digital satellite TV Communications. It includes an architec-
ture design specification, as well as the results of FPGA prototyping and of the logical and physical synthesis in
65nm CMOS. Moreover, it can be used as a basis for BCH Decoder designs for other kind of communications or
even storage error correction.

Index Terms: BCH, Error-correction, DVB-S2, VLSI, FPGA

I. INTRODUCTION

The Second Generation Digital Video
Broadcasting System for Satellite broadcasting and
unicasting (DVB-S2) was specified to cope with any
existing satellite transponder characteristics. It is used
for applications such as: broadcast for High Definition
Television (HDTV), iterative services for consumer
applications, Digital TV distribution and news gath-
ering, distribution of signal to terrestrial transmitters,
among others [1].

The DVB-S2 standard has been specified around
three key concepts: best transmission performance, to-
tal flexibility and reasonable receiver complexity that
allows different modulations (QPSK, 8-PSK, 16-
QAM and 32-QAM) and error protection levels (1/4,
1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, and 9/10)
to be used on a frame by frame basis, achieving about
30% of capacity gain over its predecessor [1].

Due to an improved Forward Error Correction
(FEC) subsystem, the DVB-S2 standard achieves a
near Shanon limit [2] performance. This subsystem is
composed by the De-Interleaver, Low Density Parity
Check Code (LDPC) decoder [3], [4] and the Bose-
Chaudhuri-Hocquenghem (BCH) decoder [5]–[8]
blocks.

The De-interleaver rearranges the data in the
original sequence, previously interleaved in a non-con-
tiguous way to increase performance in error-correc-
tion coding. The structure of the frame provided by
the De-Interleaver with its components is illustrated in
Fig. 1. The length of each frame segment depends on

the adopted code-rate and frame type, as established
in [1].

The high error-correction capability of DVB-S2
is achieved due to the concatenation of LDPC and
BCH decoders. The former uses the LDPCFEC bits
to execute a coarse correction, eliminating most of the
errors. The latter uses the BCHFEC bits for doing a
fine correction of up to 12 bits according to the code-
rate and frame type.

The BCH decoder, focus of this paper, executes
the error detection and correction process illustrated
by the flowchart in Fig. 2.

The internal architecture of the proposed BCH
decoder is explained along this paper. It also presents
results regarding FPGA implementation, as well as
logical and physical synthesis results obtained using a
65nm CMOS library. A comparison with the approach
in [7] is also provided.

The remainder of the paper is organized as fol-
lows: Section II introduces the proposed BCH decoder
architecture. Section III presents the implementation
results. Section IV concludes the paper and outlines
future work.

Figure 1. DVB-S2 FECFRAME

A Synthesizable BCH Decoder For DVB-S2 Satellite Communications
Chaves, Lima & Mertes

175Journal of Integrated Circuits and Systems 2015; v.10 / n.3:174-180

II. PROPOSED ARCHITECTURE

This section presents the design of a circuit able
to detect and correct errors within a DVB-S2 frame. It
has an error correction capacity (t) of up to 12 errors,
according to the transmission code rate and frame size,
as required in the DVBS2 standard [1].

The proposed BCH decoder is composed by
five internal modules and an XOR gate. Its internal ar-
chitecture is illustrated by Fig. 3 and the functionality
of its modules explained in subsections A through E.
The implementation of this design is in charge of seri-
ally receiving a FECFRAME, without LDPCFEC bits,
through the data in input and transmitting an uncoded
BBFRAME via the data out output.

A. The BCH Control Unit (CU)

This module contains the counters that are set
according to the frame type and code rate configura-
tions for controlling the, also incorporated, finite state
machine that coordinates the entire BCH decoding
process, as shown in Fig. 4.

The BCH decoder remains in the IDLE state
while no data has been received. As soon as the first val-
id bit arrives, the decoder switches to the RX Stage 1
state, where it receives all the bits of the BBFRAME.
These bits are introduced into the Syndromes Calculator
(SC) and stored in the Memory Buffer (MB) for further
transmission. When all the bits of the BBFRAME have
been received (i.e. first K bits), a transition to the RX
Stage 2 state is done. In this state, the received bits are
only inputted to the SC, this because only the first K bits
need to be transmitted. When all the N bits are received,
the SC will have calculated the syndromes. As illustrat-Figure 2. BCH Decoder Flowchart

Figure 3. Internal architecture of the proposed BCH Decoder

Figure 4. Finite State Machine of the DVB-S2 BCH Decoder

A Synthesizable BCH Decoder For DVB-S2 Satellite Communications
Chaves, Lima & Mertes

176 Journal of Integrated Circuits and Systems 2015; v.10 / n.3:174-180

ed in Fig. 2, if all the syndromes have a zero value, no
error was detected and the stored BBFRAME can be
transmitted, this is done in the TX state. On the oth-
er hand, if at least, a non-zero syndrome was obtained,
all 2t syndromes are passed to the key equation solv-
er (KES) module in the KES state. After running the
KES, during t clock cycles, an error locator polynomial
is obtained and passed to the Polynomial Roots Finder
(PRF) module. Now, while in the TX state, as bits are
fetched from the MB, the PRF provides a single-bit sig-
nal when a root of the error locator polynomial is found.
These two bits are XORed and the result is the output of
the decoder. When all the K bits have been transmitted,
the BCH decoder returns to IDLE state.

B. The Syndrome Calculator (SC)

This module determines if the received frame
contains or not any erroneous bits. As explained in
[9], this can be done by representing the frame as a
polynomial and according to its size, calculating the
remainder of dividing it by the primitive polynomials
from Table I or Table II, normal and short frames re-
spectively [1].

Alternatively to the iterative design in [9],
a parallel design can also be found in the litera-
ture. Nevertheless, we adopted the iterative design,

which despite its larger latency, occupies less die area.
Moreover, its latency can be neglected by overlapping
it with the latency of data reception, so an effective
latency of frame-length clock cycles is maintained in-
stead of twice that time.

Fig. 5 depicts the architecture of the imple-
mented SC, where the twelve Linear Feedback Shift
Registers (LFSRs) are configured with the primitive
polynomials from Table I or Table II, according to the
size of the incoming frame. The combinational logic
is composed by a set of XOR gates determined by the
Algorithm 1, as explained in [9].

Table I. BCH polynomials for normal FEC frames.
G1 x16 + x5 + x3 + x2 + 1
G2 x16 + x8 + x6 + x5 + x4 + x + 1
G3 x16 + x11 + x10 + x9 + x8 + x7 + x5 + x4 + x3 + x2 + 1
G4 x16 + x14 + x12 + x11 + x9 + x6 + x4 + x2 + 1
G5 x16 + x12 + x11 + x10 + x9 + x8 + x5 + x3 + x2 + x + 1
G6 x16 + x15 + x14 + x13 + x12 + x10 + x9 +x8 + x5 + x3 + x2 + x + 1
G7 x16 + x15 + x13 + x11 + x10 + x9 + x8 + x6 + x5 + x2 + 1
G8 x16 + x14 + x13 + x12 + x9 + x8 + x6 + x5 + x2 + x + 1
G9 x16 + x11 + x10 + x9 + x7 + x5 + 1
G10 x16 + x14 + x13 + x12 + x10 + x8 + x7 + x5 + x2 + x + 1
G11 x16 + x13 + x12 + x11 + x9 + x5 + x3 + x2 + 1
G12 x16 + x12 + x11 + x9 + x7 + x6 + x5 + x + 1

Table II. BCH polynomials for short FEC frames.
G1 x14 + x5 + x3 + x + 1
G2 x14 + x11 + x8 + x6 + 1
G3 x14 + x10 + x9 + x6 + x2 + x + 1
G4 x14 + x12 + x10 + x8 + x7 + x4 + 1
G5 x14 + x13 + x11 + x9 + x8 + x6 + x4 + x2 + 1
G6 x14 + x13 + x9 + x8 + x7 + x3 + 1
G7 x14 + x13 + x11 + x10 + x7 + x6 + x5 + x2 + 1
G8 x14 + x11 + x10 + x9 + x8 + x5 + 1
G9 x14 + x10 + x9 + x3 + x2 + x + 1
G10 x14 + x12 + x11 + x9 + x6 + x3 + 1
G11 x14 + x12 + x11 + x4 + 1
G12 x14 + x13 + x10 + x8 + x7 + x6 + x5 + x3 + x2 + x + 1

Figure 5. Internal architecture of the syndrome calculator

Algorithm 1. Combinational logic generator for the syndromes
calculator.

Input: i: Index of the Galois field element αi that will be substituted.
GF: GF(2m) type Galois Field.
m: Word length of each α element from GF (in bits)

Output: B: m x m matrix that indicates the indexes of the bits from
bj(x) that have to be XORed in order to obtain Si.

1: Let αk be an element from GF
2: Initialize the B matrix with 0
3: B[1][m] ß 1
4: for l ß 1 to m – 1 do
5: k ß (i x l) mode (2m – 1)
6: B[l + 1] [] ß αk

7: end for
8: return B

A Synthesizable BCH Decoder For DVB-S2 Satellite Communications
Chaves, Lima & Mertes

177Journal of Integrated Circuits and Systems 2015; v.10 / n.3:174-180

C. The Key Equation Solver (KES)

This module receives the calculated syndromes
and based on them, obtains a polynomial known as
the Error Locator Polynomial (). The most common
algorithms found in the literature for executing this
stage of the BCH decoding process are the Sugiyama/
Euclidean [10], [11] and the Berlekamp-Massey
(BM) algorithm [5], however, variations of the BM
algorithm are more commonly used [11], [12]. These
variations reduce latency by decreasing the amount
of iterations for binary codes such as the BCH and
also eliminate the Galois Field (GF) inversions done
in each iteration of the original algorithm, thus reduc-
ing hardware complexity [13]. We implemented the
Simplified inverse-free Berlekamp-Massey (SiBM),
introduced in [14] and corrected by [12], which con-
siders those two optimizations. The SiBM Algorithm
is shown in Fig. 6.

In the implemented circuit, the latency of this
stage, in clock cycles, is equal to the error correction
capacity of the decoding configuration, as established
in [1] (i.e. 8, 10 or 12 clock cycles).

D. The Polynomial Roots Finder (PRF)

This module uses σ to indicate which of the bits
of the frame have been swapped. The algorithm im-
plemented for this process is the Chien Search [15].
This algorithm considers σ as an algebraic expression
and evaluates it by substituting each of the elements
of a GF, chosen according to the size of the frame. If
the evaluation of the expression is equal to zero, the
GF element is considered a root of the polynomial and
the position of its inverse element within the GF, the
position of the error in the frame.

The DVB-S2 standard [1] considers 21 different
BBFRAMES sizes classified in two groups, normal and
short BBFRAMES. As established by the standard, the
GF(14) and GF(16) are used by the Polynomial Roots
Finder module. Since the size of each frame is smaller
than its corresponding GF size, BCH codes used in
DVB-S2 are considered to be shortened BCH codes.
Thus, the variation of the Chien Search presented in
[16], and illustrated by Fig. 7 was implemented, where
β=2m – Nbch – 1, and m = 16 or m = 14 according to
the frame type.

Moreover, the latency of this process can also be
discriminated since it is overlapped with the latency of
the transmission process.

E. The Memory Buffer (MB)

This module stores a complete BBFRAME. Data
is received serially at the same time as the Syndrome
Calculator, but only the BBFRAME bits are stored (no
BCHFEC bits). The frame is stored while the KES cal-
culates the Error Locator Polynomial. Afterwards, the
bits are fetched in a FIFO manner and XORed with
the output of the PRF, in this way, the bits contained
in the positions marked as erroneous are swapped back
to their correct value.

Figure 6. SiBM Algorithm Figure 7. Shortened Chien search

A Synthesizable BCH Decoder For DVB-S2 Satellite Communications
Chaves, Lima & Mertes

178 Journal of Integrated Circuits and Systems 2015; v.10 / n.3:174-180

III. IMPLEMENTATION RESULTS

After the architecture detailed in Section II was
defined, a golden model was implemented using the
GNU Octave high-level interpreted language [17].
Subsequently, the BCH decoder was implemented us-
ing the VHDL hardware description language and
the results of its simulations compared to those of the
golden model. Afterwards, the design was prototyped
in FPGA, as well as logically and physically synthesized
using Encounter RTL Compiler [18], the 65nm HVT
library from Global Foundries and a voltage of 1.08 v.

Although many papers related to BCH codes can
be found in the literature, few of them consider long
codes such as the ones used in DVB-S2. Additionally,
due to the use of different technology sizes and the lack
of complete synthesis information in those few papers,
no fair comparisons could be made with our approach.
In order to serve as a comparison base for future im-
plementations, we present results of FPGA prototyping,
logical and physical synthesis in subsections A, B, and C.

A. FPGA Prototype Results

A prototype of the BCH Decoder was imple-
mented on the Stratix IV GX FPGA development kit
from Altera [19] [20]. This prototype reported a max-
imum frequency of 100.93MHz and a resource usage
as detailed in Table III.

B. Logical Synthesis Results

The amount of required cells and area occupa-
tion of the entire BCH decoder, as well as of its main
modules, for a frequency of 62:5 MHz, are listed in
Table IV. In the same way, leakage, switching and total
power are listed in Table V.

Even though, our project requirements establish
a working frequency of 62.5 MHz, we also synthesized
our design for multiples of this frequency (i.e. 2x, 3x,
and 4x). With this, we found out that timing viola-
tions occurred for a frequency of 250 MHz, showing a
Worst Negative time Slack (WNS) of –283 ps. Results
regarding the amount of cells required and area for
each of the frequencies are listed in Table VI, likewise,
power consumption results are listed in Table VII.

H. Physical synthesis results

Values obtained at the physical synthesis stage
for Internal, leakage, switching, and total power of the
entire BCH Decoder die and of its main modules are
presented in Table VIII for a frequency of 65.50 MHz.
Power estimations for other frequencies are listed in
Table IX.

Table X shows the amount of gates used for each
of the four frequencies, as well as the area occupied by

Table III. FPGA prototyping results for Altera’s Stratix IV.

Module Combinational
ALUTs Registers Memory bits

SC 868 192 0
KES 8,044 767 0
PRF 2,238 209 0
MB 87 37 58,192

Total 11,368 1,250 58,192

Table IV. Logical synthesis – 62.5 MHz utilization results.
Module Cells Area (µm2)

SC 3,007 8,404
KES 27,265 76,298
PRF 7,839 21,715
MB 251 114,217

Total 38,753 221,660

Table V. Logical synthesis – 62.5 MHz power results.
Module Leakage (µW) Switching (µW) Total (µW)

SC 3.05 1,253.78 1,256.83
KES 33.39 13,260.69 13,294.07
PRF 8.75 3,645.38 3,654.13
MB 32.26 49.11 81.37

Total 77.77 18,362.09 18,439.86

Table VI. Logical synthesis utilization results for other frequencies.
Frequency

(MHz) WNS Cells Area
(µm2)

62.50 10,223 38,753 221,660.25
125.00 2,275 38,751 221,706.33
187.50 2 38,766 221,755.61
250.00 –283 40,105 225,342.49

Table VII. Logical synthesis power results for other frequencies.
Frequency

(MHz) Internal (µW) Leakage
(µW)

Switching
(µW)

Total
(µW)

62.50 12,786.76 77.77 18,362.09 18,439.86
125.00 21,162.43 77.62 30,628.99 30,706.61
187.50 28,438.95 77.54 41,279.20 41,356.73
250.00 34,932.68 80.56 51,341.57 51,422.13

Table VIII. Physical synthesis – 62.5 MHz power results.

Module Internal (µW) Leakage
(µW)

Switching
(µW)

Total
(µW)

SC 350.99 2.99 770.08 1,124.06
KES 2,287.52 32.67 4,084.13 6,404.34
PRF 1,067.28 8.59 1,352.32 2,428.19
MB 23.17 32.56 7.46 62.89

Total 3,763.45 76.82 6,240.87 10,081.14

Table IX. Physical synthesis power results for other frequencies.
Frequency

(MHz) Internal (µW) Leakage
(µW)

Switching
(µW)

Total
(µW)

62.50 3,763.45 76.82 6,240.87 10,081.14
125.00 7,475.36 76.81 12,276.03 19,828.21
187.50 11,722.30 76.51 20,270.39 32,069.20
250.00 15,321.32 79.80 26,991.17 42,392.29

Table X. Physical synthesis utilization results for other frequencies.
Frequency

(MHz) Gates Area
(µm2)

Density
(%)

62.50 112,725 221,660.69 65.89
125.00 112,773 221,707.78 65.90
187.50 112,824 221,754.88 65.92
250.00 116,561 225,340.90 66.99

A Synthesizable BCH Decoder For DVB-S2 Satellite Communications
Chaves, Lima & Mertes

179Journal of Integrated Circuits and Systems 2015; v.10 / n.3:174-180

IV. CONCLUSION

This paper presented the development of a
Synthesizable BCH decoder for DVB-S2 satellite com-
munications. The circuit was implemented in FPGA
using independent platform VHDL code. Additionally,
a preliminary logical synthesis for ASIC implementa-
tion was also realized, using the

Encounter RTL Compiler. Simulations were
performed comparing the implementation developed
in VHDL with a golden model developed using a
high-level interpreted language.

Moreover, logical synthesis and Back-end results
showed that the BCH Decoder circuit can be synthe-
sized, for a frequency of 62.50 MHz, into a die size of
336400µm2 with 65.89% of density with a total power
of 10.08 mW using global foundry 65nm technology.
Synthesis results for other frequencies were also pre-
sented.

Future work includes the study of parallel struc-
tures that can improve the latency and throughput of
the proposed BCH Decoder in order to test it in other
communication systems with faster error correction re-
quirements. Moreover, area optimization will also be
considered.

Additionally, future work will also consider the
implementation of a variant of the proposed BCH de-
coder compatible with the DVB-S2X extension of the
DVB-S2 standard.

ACKNOWLEDGEMENTS

Authors would like to thank the Brazilian
Ministry of Science, Technology and Innovation
(MCTI), CNPq and the IC-Brazil Program, that fund-
ed this project through the grant 550467/2011-4.

REFERENCES

[1] ETSI, “Digital Video Broadcasting (DVB); Second generation
framing structure, channel coding and modulation systems
from Broadcasting, Interactive Services, News Gathering and
other broadband satellite applications,” ETSI EN 302 307
(V1.3.1), 03/2013.

[2] C. E. Shannon, “A Mathematical Theory of Communication,”
ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 5, no. 1, pp. 3–55, 2001.

[3] H. Jeong and J. T. Kim, “Implementation of LDPC Decoder
in DVB-S2 Using Min-Sum Algorithm,” in Convergence and
Hybrid Information Technology, 2008. ICHIT ’08. International
Conference on, 2008.

[4] Denise C. Alves, Eduardo R. de Lima, and Jose E. Bertuzzo,
“A pipelined semi-parallel LDPC Decoder architecture for
DVB-S2,” in 3rd Workshop on Circuits and Systems Design
(WCAS 2013), Curitiba, Brazil, September 2013.

the entire design (including the memory block) and
the density obtained in the back-end on a die of 580µm
x 580µm (336400µm2).

A back-end amoeba view of the BCH decoder
can be seen in Fig. 8, where each of the main modules
from Fig. 3 has been labeled. Additionally, a placement
view can be seen in Fig. 9.

Figure 9. Back-end placement view

Figure 8. Back-end amoeba view

A Synthesizable BCH Decoder For DVB-S2 Satellite Communications
Chaves, Lima & Mertes

180 Journal of Integrated Circuits and Systems 2015; v.10 / n.3:174-180

[5] E. R. Berlekamp, “On Decoding Binary Bose-Chadhuri-
Hocquenghem Codes,” Information Theory, IEEE
Transactions on, vol. 11, no. 4, pp. 577–579, 1965.

[6] H. O. Burton, “Inversionless Decoding of Binary BCH Codes,”
Information Theory, IEEE Transactions on, vol. 17, no. 4,
1971.

[7] B. Zhang, D. Liu, S. Wang, X. Chen, and H. Liu, “Design and
Implementation of Area-Efficient DVB-S2 BCH Decoder,” in
Computer Engineering and Technology (ICCET), 2010 2nd
International Conference on, vol. 3. IEEE, 2010, pp. V3–179.

[8] Y.-M. Lin, J.-Y. Wu, C.-C. Lin, and H.-C. Chang, “A Long Block
Length BCH Decoder for DVB-S2 Application,” in Integrated
Circuits, ISIC’09. Proceedings of the 2009 12th International
Symposium on. IEEE, 2009, pp. 171–174.

[9] Cesar G. Chaves, Eduardo R. de Lima, Jacqueline G. Mertes,
and Jose E. Bertuzzo, “A Synthesizable Serial-in Syndrome
Calculator for DVBS2 BCH Decoding,” in 3rd Workshop on
Circuits and Systems Design (WCAS 2013), Curitiba, Brazil,
September 2013.

[10] G. C. Clark Jr and J. B. Cain, Error-Correction Coding for
Digital Communications. Springer, 1981.

[11] P. Sweeney, Error Control Coding: From Theory to Practice.
Wiley New York, 2002.

[12] M. Yin, M. Xie, and B. Yi, “Optimized algorithms for binary
bch codes,” in Circuits and Systems (ISCAS), 2013 IEEE
International Symposium on. IEEE, 2013, pp. 1552–1555.

[13] H.-C. Chang and C. B. Shung, “New Serial Architecture for
the Berlekamp-Massey Algorithm,” Communications, IEEE
Transactions on, vol. 47, no. 4, pp. 481–483, 1999.

[14] W. Liu, J. Rho, and W. Sung, “Low-Power High-Throughput
BCH Error Correction VLSI Design for Multi-Level Cell NAND
Flash Memories,” in Signal Processing Systems Design and
Implementation, 2006. SIPS’06. IEEE Workshop on. IEEE,
2006, pp. 303–308.

[15] R. T. Chien, “Cyclic Decoding Procedures for Bose-
Chaudhuri-Hocquenghem Codes,” Information Theory, IEEE
Transactions on, vol. 10, no. 4, pp. 357–363, 1964.

[16] M. Gomes, G. Falc˜ao, V. Silva, V. Ferreira, A. Sengo, L.
Silva, N. Marques, and M. Falc˜ao, “Scalable and parallel co-
dec architectures for the dvb-s2 fec system,” in Circuits and
Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference
on. IEEE, 2008, pp. 1506–1509.

[17] John W. Eaton, “About GNU Octave,” http://www.gnu.org/
software/octave/ [Accessed 14th Jun 2015].

[18] Cadence Design Systems, “Encounter RTL Compiler
Datasheet,” 2012, http://www.cadence.com/rl/Resources/
datasheets/encounter_ rtlcompiler.pdf [Accessed 14th Jun
2015].

[19] Altera Corporation, “Stratix IV GX FPGA Development Kit
User Guide,” August 2010, http://www.altera.com/literature/
ug/ug_sivgx_ fpga_dev_kit.pdf [Accessed 14th Jun 2015].

[20] Altera Corp., “Stratix IV GX FPGA Development Board
Reference Manual,” August 2012, http://www.altera.com/liter-
ature/manual/rm_ sivgx_fpga_dev_board.pdf [Accessed 14th
Jun 2015].

