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ABSTRACT

The present research aims to develop an approach using HLA (High Level Architecture), enabling the cre-ation of 
a distributed and heterogeneous environment, composed by different tools and models to obtain a better trade-off 
between accuracy and run time in power estimation. These models can be described in different languages and/
or abstraction levels, as well as use different power estimation approaches. The use of HLA enables the synchro-
nized and distributed simulation of the elements that compose the simulation environment. The approach must 
allow the collecting and grouping of power estimation data in a centralized manner. As a case study, an MPSoC 
(MultiProcessor System-on-Chip) ESL/TLM model, described in C++/SystemC, and an ESL model, created on 
Ptolemy framework, have been used. The experimental results show the flexibility of the approach, which promo-
tes an integrated view of power estimation data.

Index Terms: power estimation, electronic system level, distributed simulation

I. INTRODUCTION

There are several reasons to reduce the energy 
consumed by an SoC: reduction of thermal wearing; 
cooling cost reduction of the electronic device; increase 
of the operating time per battery charge, among others 
[1].

The impact of the power generation to meet 
the needs of electronic devices is directly linked to the 
environment. This has as main consequence the emis-
sion of greenhouse gases in the atmosphere (carbon 
footprint) and can accelerate the process of global war-
ming and air pollution.

Therefore, power consumption is one of the 
main concerns during the design of an SoC (System
-on-a-Chip). Recent re-searches are dedicated to power 
consumption estimation in SoC design [2] [3] [4] [5] 
[6] [7] [8]). Each of these works is focused on a dif-
ferent abstraction level and is based on a different esti-
mation approach [9].

Among the possible abstraction levels, the most 
important ones are the ESL (Electronic System Le-
vel), RTL (Register Trans-fer Level), Gate level and 
Transistor level [10]. Designers must consider power 
consumption issues as early as possible to re-duce deve-
lopment time [5]. The higher is the level of abstraction 

where designers can obtain information about power 
consump-tion, cheaper are eventual modifications in 
design.

In addition, high-level specifications allow the 
designer to ignore several RTL coding issues, such as 
synchronization and scheduling operations, while cap-
turing the project features [2]. In this context, power 
consumption estimation at the system level (ESL) has 
become an important research topic in recent years. 
Many of the methodologies focus on the relationship 
between power estimation accuracy and its computa-
tional cost at ESL level [2] [5] [6] [11].

Diverse authors agree that the main challenge to 
develop power estimation tools at ESL is to reach the 
most adequate balance between simulation performan-
ce and accuracy [5] [12] [8] [9].

Due to complexity of the projects and the time 
pressure be-tween product specification and time-
to-market, it is not always possible to realize power 
consumption estimation at RTL level (Register Trans-
fer Level) or at logic gates level for a whole sys-tem. 
Thus, it is crucial to estimate the power consumption 
as soon as possible during the project of a digital cir-
cuit design.

During the last years researches proposed power 
consump-tion estimation approaches at ESL [2] [10] 
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[4] [5] [13] [9]. De-pending on the project comple-
xity, it is necessary to combine different elements to 
provide an adequate power estimation, such as, diffe-
rent estimation approaches, different tools or, dif-fe-
rent programming languages and different abstraction 
levels.

However, integrate these heterogeneous ele-
ments in a unique design environment, while exchan-
ging data among them and keeping the overall system 
consistent, is a challenge and is the main focus of this 
work.

For this integration, High-Level Architecture – 
HLA offers mechanisms to enable applications, tools 
and simulation to ex-change information in a synchro-
nous way [14]. HLA is defined as a common architec-
ture for modeling and distributed simula-tion.

This research has the objective of developing 
an approach using High-Level Architecture (HLA) to 
allow the creation of a distributed and heterogeneous 
simulation environments, com-posed of different tools 
and models. These models can be de-scribed in diffe-
rent languages and/or levels of abstraction, and also 
enables different approaches to estimate the power 
con-sumption. The use of HLA allows simulations in 
a synchro-nized and distributed manner. The presen-
ted approach provides the estimation and collection 
of power consumption data in a centralized way. For 
study case, an experiment is presented where an ESL 
model running in Ptolemy is co-simulated with an Sys-
temC-TLM model. Each one estimates power using a 
different approach and all the data is collected in cen-
tralized way.

II. RELATED WORK

The total energy consumption of an integrated 
circuit is the sum of dynamic and static energy con-
sumption [15]. Techniques to reduce dynamic power 
became common. With CMOS process technology 
lower than 90nm, the static power (leakage power) 
has become important, and in many cases become a 
dominant restriction to design [16].

Techniques for reducing energy consumption 
can be applied at various levels of abstraction during 
the development of an SoC, from system specification 
to layout generation [15]. A sum-mary of the main 
techniques for energy consumption reduction can be 
found in [17].

As well as techniques for energy consumption 
reduction, power consumption estimation in an SoC 
can be performed at various levels of abstraction. Ac-
cording to [18], the power consumed by a digital cir-
cuit can be estimated at four differ-ent levels of abs-
traction: transistor-level, gate-level, Register Transfer 
Level (RTL) and Electronic System level (ESL).

The main challenge for power consumption 
estimation tools is to achieve the most adequate ba-
lance between performance and accuracy [5] [8] [9]. 
To reduce energy consumption in a final product of 
a hardware design, it is beneficial that the power con-
sumption estimation can be performed since the very 
beginning of the design flow [9].

Tools for power consumption estimating at 
lower levels of abstraction allow accurate energy mo-
deling, but result in longer simulation run time and 
higher design cost [5] [1].

Methods for power estimation with a low le-
vel of abstrac-tion (e.g., layout, gate level and RTL) 
take into account many details of the simulated SoC, 
making simulations slower and in-creasing the design 
time. The slowness of these methods can be conside-
red as an obstacle to productivity [9]. Thus, estimation 
techniques at a higher level of abstraction (e.g., ESL) 
are desired.

ESL power consumption estimation techniques 
perform esti-mations based on system descriptions at 
higher level of abstrac-tion using energy consumption 
models (power models).

A power model can be defined as a model that 
captures the dependence of power dissipation of a de-
sign block based on certain parameters, such as swit-
ching activity, capacitance, etc. Its accuracy is very de-
pendent on the model of computation, input/output 
activities, capacitance, etc [2].

Many works in power estimation scope try to 
focus on esti-mating the power consumption using di-
fferent power models, in order to provide more accura-
te power estimation. These power models usually vary 
in terms of granularity [19] [13] [20] [21], allowing 
the designer to decide which use to achieve a good tra-
de-off between accuracy and efficiency.

In [19] the authors propose a power estimation 
framework that integrates heterogeneous component 
power models us-ing a network of “power monitors”. 
Power monitors enable each component model to be 
associated with multiple (distinct) power models of di-
ffering accuracy and efficiency, or with con-figurable 
power models which can be tuned to different accu-ra-
cy/efficiency levels.

Authors from [13] have developed a system-le-
vel power esti-mation framework which uses different 
power modeling tech-niques for each component: 
processor cores, bus fabrics, custom IP blocks and me-
mories. The authors highlight the fact that an SoC has 
many heterogeneous components with varying power 
characteristics, ranging from very regular structures 
such as on-chip SRAM to irregular custom IP blocks 
such as video codec, what makes difficult to derive a 
single modeling methodology that covers every compo-
nent constituting an SoC device. Thus, different appro-
aches need to be adopted for different compo-nents.
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In another work [20] is presented a hierarchical 
power charac-terization model that is applicable to any 
kind of custom IP. The power model has several levels 
that have varying accuracy, sim-ulation speed and de-
sign effort. These levels define the power models accu-
racy. Upper levels represent coarser grained power mo-
dels, while lower levels represent more accurate power 
mod-els, i.e., with greater detail. The methodology 
was applied on an H.264 decoder prediction IP.

Similarly, in [21] was developed an ESL power 
estimation framework based on an interface which 
allows to integrate vari-ous power models. Designers 
can choose either the fine-grained or coarse-grained 
power models according to the trade-off be-tween ac-
curacy and computing cost. For evaluating power esti
-mation framework, PAC (Parallel Architecture Core) 
Duo system [22] was adopted as the study case.

Several works concerning power estimation 
at ESL (Elec-tronic System Level) or RTL (Register 
Transfer Level) implement their approach extending 
the SystemC functionality, by modi-fying the SystemC 
library [23] or adding new libraries [24] [25] [26].

The authors in [23] modify the SystemC class 
library to allow the calculation of energy consumption 
of hardware described at ESL. According to the au-
thors, the SystemC class library was modified in order 
to receive a new set of classes for power esti-mation, so 
called Powersim. The Powersim operation is based on 
monitoring the C++ operators, when called on Sys-
temC data type. Different energy models are used for 
each data type. This method does not require any chan-
ge in the application source code to obtain the energy 
consumption during a SystemC simu-lation.

In [24] the SystemC class library was extended 
with new classes describing area, delay and power cha-
racteristics of the SystemC RTL models.

A framework called PowerSC is presented in 
[25]. Here, the authors instruments SystemC for 
power characterization, mod-eling and estimation. 
The key idea was to extend SystemC by adding power
-aware C++ classes. The PowerSC framework pro-vi-
des an API to support the integration of alternatives 
estimation techniques. To use the framework, only two 
modifications are necessary in the SystemC description 
to enable PowerSC usage: The inclusion of the main 
PowerSC header file within the model files, and the 
invocation of a PowerSC macro in the end of the simu-
lator’s main function, in order to print out the results. 
The PowerSC framework can be used at ESL, RTL or 
gate-level.

In [26] the authors developed a library which 
extends every SystemC module with non-functional 
data regarding physical layout and power consumption 
and which accumulates and estimates dynamic ener-
gy usage. The work is based in two pre-vious libraries 
for SystemC power modeling: TLM POWER2 [27] 

and PKtool [28]. The work supports both phase/mode 
power modeling and energy-per-transaction logging 
for TLM (Transactional-Level Modelling). The state 
of an IP block is char-acterized by both its phase and 
mode. A phase is characterized by its power and time 
duration (e.g. read, wait, compute), and mode, the ac-
tual operation mode (e.g. on, off, sleep).

Depending on the project requirements, to gua-
rantee a better accuracy in power estimation, it might 
be necessary to estimate the power consumption of a 
system or part of it using differ-ent elements: different 
power estimation approaches, tools or, even, models 
described in different languages and/or abstrac-tion le-
vels. Nevertheless, it is a challenge to incorporate these 
elements to create a simulation environment distribu-
ted and heterogeneous, which allows these elements to 
communicate and exchange information synchronou-
sly.

The SoC designer needs to evaluate which abs-
traction levels and estimation techniques are the most 
adequate for each part of the SoC in the particular 
application context. Then a frame-work is needed, 
which enables the designer to integrate these abstrac-
tion models and power estimation techniques into one 
unique simulation that provides centralized informa-
tion on the overall power consumption.

To the best of our knowledge, none of the afo-
rementioned works uses a general purpose architecture 
for modeling and dis-tributed simulation, such High
-Level Architecture (HLA), in or-der to allow the cre-
ation of a heterogeneous and distributed sim-ulation 
environment, composed by different tools, models de
-scribed in different languages and/or abstraction le-
vels, which enables the use of different power estima-
tion approaches for each model during the simulation.

A. High-Level Architecture (HLA)

In order to allow a simulation environment dis-
tributed and het-erogeneous, composed by different 
tools, models described in different languages and/or 
abstraction levels, adopting different power estima-
tion techniques, we used the High-Level Architec-ture 
(HLA) in our approach.

High-Level Architecture (HLA) is a general
-purpose archi-tecture defined by Defence Modelling 
and Simulation Office (DMSO) to support reusability 
and interoperability using a wide number of different 
types of simulators, which are maintained by U.S De-
partment of Defense (DoD) [14]. The standard defines 
this architecture having three parts: the first explores 
the frame-work in a general way and its main rules, the 
second deals with the interface specifications between 
simulators (HLA), and the third deals with the speci-
fication model of data (OMT) which are transferred 
between simulators.
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The HLA has a time managing service to syn-
chronize data between heterogeneous models. The 
main goals of HLA are to enable the interoperation of 
distinct models and reuse them when necessary, to pro-
vide a distributed simulation environ-ment for systems 
that need large scale computing.

The principal idea of HLA is to separate the spe-
cifics function-ality of each simulator using a general 
proposal infrastructure (see Figure 1). Each simulator 
needs to use the RunTime Infras-tructure (RTI) to 
communicate to HLA and others simulators. The RTI 
is responsible for the specific structures of each simu-
la-tor to interface with the global structure of HLA. 
Each simulator that is connected to one RTI is called 
a Federate. The set of all federates managed by one 
RTI is called a Federation. In cases of geographically 
distributed simulations, it is also possible to have many 
Federations in a same simulation environment.

Analogous to how a distributed operating sys-
tem provides services to applications, the RTI provi-
des services to federates. These services are used, basi-
cally, for synchronizing the feder-ates and controlling 
the data exchange between them. These interfaces are 
arranged into seven basic service groups: Federa-tion 
management, Declaration management (DM), Object 
man-agement, Ownership management, Time mana-
gement, Data distribution management (DMM) and 
Support services (refer to [29] for details).

In our approach, each Federate can be an in-
dependent sim-ulator (i.e., SystemC, Matlab, Ptolemy, 
etc.) or even part of a system running in a simulator.

In HLA, an object-oriented paradigm is used to 
describe data, called Federate Object Model (FOM). 
There, it is possible to describe classes, objects, attri-
butes and hierarchy of classes. Once configured, all fe-
derates read and write attributes of the objects defined 
by FOM. HLA uses publish-subscribe protocol, thus 
every federate must announce the subscribed object 
and which object it can publish. In our approach, all 
the federates subscribe and publish all objects and at-

tributes. The description of these objects is presented 
following. For more details about Federation Object 
Model (FOM) rules and syntax, refer to [29].

(FED
   (Federation TestFed)  
   (FEDversion v1.3) 
   (spaces)
   (objects
      (class PowerHLA
        (attribute privilegeToDelete reliable timestamp)
        (class RTIprivate)  
        (class module
           (attribute id reliable timestamp)  
           (attribute energy reliable timestamp)  
           (attribute module reliable timestamp) 
           )))
   (interactions))

B. MPSoC Modeling

In our case study we use a benchmark composed 
of a scalable set of MPSoCs described in C++/SystemC, 
called MPSoCBench [30]. MPSoCBench is a simulation 
toolset composed of a scal-able set of MPSoCs useful for 
the development and high level evaluation of new tools, 
methodologies, software, and hardware components. 
This tool provides a complete open source simu-lation 
infrastructure including scalable hardware and software 
components, with easy instrumentation and fast simula-
tion at different abstraction levels.

The toolset supports four different ISAs in many 
configurable and scalable MPSoC platforms with up to 
64 cores, with differ-ent interconnections at different 
simulation abstraction levels. The user provides para-
meters to create MPSoC simulators and the script ge-
nerates appropriate code for processors, intercon-nec-
tions, caches, memories, and IPs. These components 
are compiled to create one or more MPSoC simulators 
that will be stored in specific folders. The set of appli-
cations (e.g., Secure Hash Algorithm, Dijkstra, Fast 
Fourier Transform, etc.) are com-piled with the appro-
priate cross-compilers, and the executable files are sto-
red together with the simulators. After executing each 
simulation, a proof of correctness is performed evalua-
ting the application output files against a golden result.

The MPSoCBench includes SPARC and MIPS 
processors mod-els based on the LEON3 and PLAS-
MA RTL models. The power consumption model for 
these processors use PowerSC [25] framework. This fra-
mework instruments SystemC for power characteriza-
tion, modeling and estimation in multiple abstrac-tion 
levels. Its basic idea is to extend the SystemC library, 
adding C++ classes which enable power estimation.

The power models are based on different FPGA 
and ASIC technologies. Some key usages are power Figure 1. Architecture of HLA Federation
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consumption evalu-ation during program execution, 
detecting power bottlenecks, and comparison among 
different architectures.

Using the PowerSC framework, when a Sys-
temC class is compiled, an augmented executable spe-
cification is generated (by linking both, the SystemC 
and PowerSC libraries), instead of a conventional exe-
cutable specification (by linking the SystemC library 
only). The augmented specification is instrumented to 
gather signal statistics during simulation.

When the simulation is launched, the design ele-
ments are monitored and power information is dyna-
mically recorded. At the simulation end, the resulting 
information is summarized in power reports.

The authors of PowerSC highlight that the ef-
fort to enable the power estimation mechanism is mi-
nimal, since SystemC data types, signals and modu-
les do not need to be manually changed, because the 
PowerSC framework modifies them automatically.

In our case study, an MPSoC SystemC TLM 
model built by the MPSoCBench communicates with 
an ESL Ptolemy model via HLA.

C. Embedded System Modeling

Due to its close coupling with the environment, 
Embedded Sys-tems normally include different com-
ponents with heterogeneous Models of Computation 
(MoC). Thus, tools with high abstrac-tion power are 
necessary in order to model, simulate and test all such 
MoCs, e.g., Finite State Machines (FSM), Synchro-
nous Data Flow (SDF), Discrete Events (DE) and 
Continuous Time (CT). The Ptolemy II framework 
[31] is an example of a simulation and modeling tool 
intended to support system designs that involve com-
bining different MoCs.

In Figure 2 is possible to see the main compo-
nents presented by Ptolemy’s GUI, called Vergil. The 
Director manages the simu-lation according to its Mo-
del of Computation. It is also possible to see that there 
are two kinds of actors. The Atomicare the indivisible 
ones and the Composite Actors can aggregate other 
actors or complete designs (also with different Models 
of Com-putation) inside it. These hierarchical actors 
are the strategy of Ptolemy to have heterogeneous Mo-
dels of Computation in a same simulation model. The 
actors exchange data among them (called Tokens) via 
Ports and Relations.

In this work, Ptolemy is used as one of the si-
mulators in the proposed approach and the power con-
sumption is estimated by random values produced only 
as proof of concept. Ptolemy was integrated to HLA 
using a prior development by our research group [32].

III. THE POWER ESTIMATION APPROACH

The developed approach is shown in Figure 
3. All the elements were developed using C++/Sys-
temC. The elements of the ap-proach are described as 
following.

A. Data Sender

The Data Sender is responsible for exchanging 
data among inter-nal and external modules (blue ar-
rows in Figure 3) and also to synchronize internal with 
external modules. The manner how to define the syn-
chronization and data exchange between the simulated 
models will be application dependent. In Section 4 is 
presented a study case describing in details how models 
were synchronized.

Application data is sent from a simulated model 
in a feder-ate to other federates through the RTI ser-
vice1 Update Attribute Values†, executed by the Federate 
Ambassador. From the re-ceiver side, the Federate Am-

Figure 2. Example of Ptolemy GUI [31]

Figure 3. The developed approach

1All RTI-initiated services are denoted with a †(dagger) after the service name .
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The methods for data application exchan-
ging and for syn-chronizing must be coded by the 
PowerHLA user, since these methods are application 
dependent. Consequently, the user must implement 
these methods into the PowerHLA interface code.

The PowerHLA Interface is also responsible 
for creating its respective Sender Federate and to deal 
with HLA initialization aspects. It was implemented 
according with the Singleton de-sign pattern. Single-
ton ensures that a class has only one instance, and pro-
vides a global pointer to access it. This design pattern 
was used in order to provide an easy way to call the 
PowerHLA Interface methods from any place in the 
code, without instan-tiating the object every time it is 
necessary to call any of its methods.

The manner which the Power HLA Interface was 
imple-mented facilitates its extension to work with other 
languages and simulators. In our federation, we have a 
PowerHLA Inter-face instance for each Sender Federate.

E. RunTime Infrastructure

The RTI (RunTime Infrastructure) is the sof-
tware that provides common interface services, during 
a High Level Architecture (HLA) federation execu-
tion, for synchronizing and data exchang-ing [29]. 
The RTI contains the implementation of the services 
initiated by the federates. In this project, we have not 
imple-mented the RTI, but have used an open-source 
RTI called CERTI [33].

F. RTI Ambassador

Communication from a federate to the RTI is 
established via the RTI Ambassador. Each federate re-
quests services on RTI via RTI Ambassador. Services 
initiated by federates on RTI are denominated Fede-
rate Initiated Services (FIS). There are several FIS, 
among which can be cited: Publish, Subscribe, Regis-
ter, Update, etc.

The RTI Ambassador is part of the functional 
structure of the RTI. Therefore, as well as the RTI, 
the RTI Ambassador was not implemented during the 
development of the PowerHLA approach, but used the 
one from CERTI.

G. Monitor Federate

The Monitor Federate Ambassador is the inter-
face between the RTI and the HLA Power Monitor. 
The Monitor Federate Ambas-sador and the HLA 
Power Monitor form the Monitor Federate. The fede-
ration have a unique instance of the Monitor Federate, 
which collect all power estimation data from all the fe-
derates in the simulation. The Monitor Federate Am-
bassador is responsi-ble for receiving power estimation 

bassador will be notified by the RTI-initiated service 
(callback) Reflect Attribute Values†, which forward the 
received data to the Data Sender.

B. Power Sender

The Power Sender is responsible for sending 
the estimated en-ergy accumulated by each monito-
red component (red arrows in Figure 3). A monitored 
component is a piece of code, usually a functional mo-
dule, which the designer wants to monitor. The same 
Power Sender can monitor various components.

The power consumption estimation is sent to 
the Monitor Federate according to a predefined time 
interval, through the Federate Ambassador via Update 
Attribute Values† service. Thus, all the estimated ener-
gy data accumulated from each monitored component 
is sent to the Monitor Federate, and then all the respec-
tive energy related variables are set to zero in order to 
restart the accumulation of estimated energy.

All power consumption estimation data trans-
mitted from the Sender Federate is received orderly by 
the Monitor Federate, which is responsible to accumula-
te the power estimation from all simulators (Federates).

C. Federate Ambassador

The RTI communication with a Sender Federa-
te is established via a Federate Ambassador. Each Sen-
der Federate has a Federate Ambassador instance. This 
ambassador is responsible for receiv-ing application 
data from all models, as well as for forwarding respon-
ses according to service requests made from RTI, also 
known as callbacks (green arrows in Figure 3).

For example, when RTI receives a data from 
other model, the Reflect Attribute Values† callback is 
executed at Federate Ambas-sador, which will notify 
the destination module.

Regarding time management, a Sender Federate 
can request a time advance on RTI. When the request 
is granted, the RTI sends a response to the Sender Fe-
derate via Sender Federate Ambassador, through the 
callback Time Advance Grant. There other RTI-ini-
tiated services, among which can be cited: Discover, 
Reflect, Time Regulation Enabled, Time Constrained 
Enabled, etc.

The set composed by Data Sender, Power Sender 
and Feder-ate Ambassador will be denominated Sen-
der Federate. Every model which uses the PowerHLA 
approach, have necessarily a Sender Federate.

D. PowerHLA Interface

This element provides all the necessary methods to 
collect power estimation data during the simulation. The-
se methods are call-ings to the Sender Federate methods.
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data from all other models, as well as for communicate 
with RTI via callbacks for control and synchronization.

Since it is a federate, the Monitor Federate also 
request ser-vices from RTI (e.g., Create Federation Exe-
cution, Time Advance Request, etc). It is also respon-
sible for creating the federation and signalize synchro-
nization points to ensure that it will start only when all 
other Federates signalize they are ready as well.

During the simulation, CSV (Comma Separated 
Values) files are generated by the Monitor Federate. For 
each Sender Feder-ate, the Monitor Federate generates 
a CSV file which contains data about the accumulated 
estimated energy from its respec-tive monitored com-
ponents during each predefined collecting interval.

H. Other Relevant Details

The developed approach has a file at Sender and 
Manager code side, called defines.h, where the designer 
must define a set of constants in order to configure the 
simulation environment. The environment comprises 
two sides, one to deal with power, and other to deal with 
HLA. Some of most important constants from Sender 
Federate that deal with power are shown as following:

•	POWER_COLLECTING_INTERVAL: The 
time interval which the Sender Federate must 
send the power collected data to the Manager 
Federate. The unit is defined by the INTER-
VAL_UNIT constant;

•	INTERVAL_UNIT: The time interval unit. It 
can be, for example, SC_US to define the time 
interval unit as microsec-ond;

•	NUMBER_OF_MONITORED_COMPO-
NENTS: The total number of monitored com-
ponents (it can be a module, a set of modules, a 
complete SoC, etc.).
We also have constants to deal with the HLA:

•	SENDER_FEDERATE_NAME: The Sender 
Federate name. This name must be unique in 
the Federation;

•	SENDER_FEDERATE_LOOKAHEAD: The 
federate Looka-head (see [29] for details);

•	SENDER_FEDERATE_TIME_STEP: The fe-
derate Time Step (see [29] for details).
The Monitor Federate has only the constants 

needed to deal with the HLA. These constants are si-
milar to the Sender Federate constants.

IV. RESULTS

In this section, a set of experimental results 
using the proposed approach through one case study 
is presented. The case study uses two models: an MP-
SoC SystemC TLM model built by the MPSoCBench 
platform and an ESL Ptolemy model. The MP-SoC 

SystemC TLM model consists of a MIPS processor 
with one core, memory and a Network-on-chip for in-
terconnection. The Ptolemy model consists of an ESL 
model for generating messages (character stream), 
which will be synchronously con-sumed by the MP-
SoC model. The present case study aims to demonstra-
te the PowerHLA capability of creating a distributed 
and heterogeneous simulation environment.

The experiment demonstrates that models using 
different languages, as well as different power estima-
tion approaches, could be distributed and simulated 
using different tools in a synchronized way, besides 
allowing, in a centralized manner, the grouping and 
collecting of power estimation data of these models.

A. The Case Study

The MPSoC model executes a cryptographic hash 
function called Secure Hash Algorithm (SHA). Given an 
input data (e.g. a string), known as message, the SHA 
algorithm produces an output, called message digest. 
Cryptographic hash functions are vastly applied in the 
information security scope and data integrity checking.

The Ptolemy message generator creates data 
(bytes), which will be consumed by the SHA applica-
tion running in the MPSoC model. The data genera-
tion is synchronized with the MPSoC SHA application. 
When the SHA application requests a byte, an HLA 
function is called, which makes the application in MP-
SoC waits for a message coming from Ptolemy model. 
The Ptolemy model only sends a new data (byte) when 
it receives a confirma-tion from MPSoC, ensuring the 
data reception. These process are blocking, i.e., they 
pause the simulated time. In Figure 4 is shown the si-
mulation environment for the SHA application.

Figure 4. Execution Environment for the SHA Application
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The bytes created by the Message Generator are 
sent through the Ptolemy Federate via RTI, to the MP-
SoC Federate. The MP-SoC Federate, in turn, receives 
these bytes and makes them available for writing them 
in the MPSoC main memory. This data is read by the 
SHA application running in MIPS. This ap-plication 
datapath is represented by the blue arrows in Figure 4.

For each byte received by the MPSoC Federate, 
the main memory must request a new byte to the Mes-
sage Generator at Ptolemy model, as SHA needs a new 
byte to compose the mes-sage. For each data reques-
ted, an HLA function is called (via MPSoC Federate), 
which blocks the SHA execution until the re-quested 
data arrives. After receiving the data, the main memory 
requests a new data, confirming the receipt of the pre-
vious data. The bytes are requested until the message 
size is reached. This path is represented in Figure 4 by 
the purple arrows.

After receiving all bytes which compose the 
message, the SHA application is executed, and a re-
port is generated in the end, indicating that the SHA 
finished its execution. As output, the application gene-
rates the message digest.

All federates request services to the RTI and also 
receive responses related to these requests. This path is 
represented by the green arrows in Figure 4.

In a detailed view, the MPSoc Federate is com-
posed by three elements: The MPSoC Data Sender, the 
MPSoC Federate Ambas-sador and the MPSoC Power 
Sender. The MPSoC Data Sender is the element respon-
sible for making available the application data, received 
from Ptolemy Message Generator, which will be written 
into the MPSoC main Memory. The power estimation 
data generated by the processor core (MIPS) is transmit-
ted by the MPSoC Power Sender. The application data 
and the power estimation data are received and send, 
respectively, through the MPSoC Federate Ambassador.

Similarly, the Ptolemy Federate is composed by 
three ele-ments: the Ptolemy Data Sender, the Ptolemy 
Federate Am-bassador and the Ptolemy Power Sender. 
The Ptolemy Data Sender is responsible for transmit-
ting the bytes generated by the Ptolemy Message Ge-
nerator to the MPSoC Federate. The estimated power 
consumption data from the Message Genera-tor is 
transmitted by the Ptolemy Power Sender. The Pto-
lemy Federate Ambassador has an equivalent role to 
MPSoC Federate Ambassador.

Both federates use the RunTime Infrastructure 
(RTI) as a means to transmit the application data. The 
RTI implementation used in the case study was the 
CERTI [33].

The experiment is comprised in sending eight 
bytes from the Ptolemy model to the MPSoC model. 
Each sent byte represents an ASCII character. The de-
cimals 65, 66, 67, 68, 69, 70, 71 and 72 were set, re-
presenting the characters “ABCDEFGH”.

Once the bytes are received, they are written in 
the main memory of MPSoC model. Upon receiving 
all eight bytes, which composes the message, the SHA 
application reads the characters stream (message) and 
calculates the message digest.

The collecting of power estimation data from 
the simulated models is made by the Monitor Federate 
(Figure 4). This federate is composed by two elements: 
the Monitor Federate Ambassador and the HLA 
Power Monitor. The Monitor Federate organizes and 
groups the received power estimation data from the 
models, generating as output files in CSV (Comma-
Separated Values) format. The power estimation da-
tapath is represented by the red arrows in Figure 4. 
The Monitor Federate, the RTI and the Ptolemy model 
were executed in the same machine. The MPSoC mo-
del (SystemC) was executed in another computer. The 
two computers were connected by Ethernet cables via 
a switch.

The power consumed by the core in the MPSoC 
model was estimated during the simulation, through 
the power estimation approach called PowerSC [25]. 
For the Message Generator, from the Ptolemy model, 
arbitrary energy values between 0.149 and 0.157 Jou-
les were generated at each sending byte, mimicking a 
power estimation approach.

The processor core from MPSoC accumulates 
energy values in Joules for each instruction executed. 
The energy is accu-mulated during a user predefined 
interval. Thus, when the predefined interval is reached, 
the MPSoC Federate sends the accumulated energy 
data to the Monitor Federate and reset all respective 
energy values related to the processor core.

During the simulation, 97 samples were obtai-
ned. Graphi-cally, the power dissipated by the proces-
sor core is presented in Figure 5.

The Message Generator starts to send power es-
timation data when the first byte is generated, i.e., at 
the HLA time 13 (Figure 6). For each byte generated 
(at 1 HLA time unit), the Ptolemy model sends power 
estimation data. Bytes are created by the Message Ge-
nerator until the HLA time is 20. Thus, the sending in-
terval for power estimation data from this component 
com-prises the interval between the HLA time 13 and 
HLA time 20. The power dissipation data from the Pto-
lemy Message Genera-tor are shown in Figure 6. The 
combination of Figures 5 and 6 is presented in Figure 7.

Note that power estimation data are generated 
by the Pro-cessor Core before the main memory reads 
the first byte (Figure 7). This power consumption is 
a consequence of the application loading in the main 
memory as well as the variables initializa-tion, which 
are needed during the application execution.

Power estimation data is also generated when 
SHA reads all the 8 bytes from the main memory. This 
interval is comprised between the HLA time 22 and 
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97. This interval consists the application execution 
phase, i.e., the interval which the message digest is cal-
culated.

B. Models Synchronization

The MPSoC Federate and Ptolemy Federate 
were defined as time-regulating federate and time-
constrained federate. Furthermore, the MPSoC Fede-
rate subscribes the object class attributes from Ptolemy 
Federate and vice versa. These characteristics guarantee 
that the Ptolemy Federate do not advance the time to 
a point beyond it could receive Time-Stamped Order 
(TSO) messages from MPSoC Federate. Similarly, the 
MPSoC Federate cannot advance in time to a point 
beyond it could receive TSO messages from Ptolemy 
Federate.

To synchronize the models, it was necessary to 
verify the memory cycle from MPSoC model during 
the SHA application execution. The memory cycle me-
ans the time which each byte (character) is read from 
memory. Although the MPSoC model was not an RTL 
(Register Transfer Level) model, the reading of each 
byte from memory occurs approximately in an interval 
of 13 µs of SystemC simulated time.

The reading of the first byte by the SHA appli-
cation from the MPSoC memory occurs in approxi-
mately 182 µs of SystemC simulated time. Before re-
ading the first byte, the processor is initiated and the 
SHA application is transferred to the memory. Only 
after this moment, the application will be ready to 
execute.

Facing this periodicity regarding the byte rea-
ding, it was decided that the HLA time of the models 
would advance in a discrete and constant manner. Du-
ring the discrete time simula-tion, the simulation time 
is divided into a sequence of timesteps with same size. 
Thus, both federates advance from a timestep to the 
next. If this periodicity were not detected, the models 
could be synchronized by events, i.e., the time advance 
could be performed as all events for a given time were 
executed.

For example, if the simulation is at HLA time 1, 
it would advance to HLA time 2 only if all the events 
from HLA time 1 had been executed. An event could 
be, for example, the mo-ment which the MPSoC mo-
del needed to read a byte in the main memory. Its im-
portant to note that the HLA allows both im-plemen-
tation modes of synchronization: discrete time and by 
events.

Thus, each advancing in time performed by the 
MPSoC Fed-erate occurs at each 13 µs of SystemC 
simulated time. It was also defined that the memory 
cycle from MPSoC model would be equivalent to a 
cycle for data sending from Ptolemy model. The Pto-
lemy model sends a byte every 1 Ptolemy time unit, 
fol-lowed by the RTI time advance request. Thus, the 
13 µs cycle from SystemC simulator, which executes 
the MPSoC model, is equivalent to 1 unit time from 
Ptolemy simulator.

Since the federates from both models are time
-regulating and time-constrained, and the MPSoC Fe-
derate subscribes class ob-ject attributes published by 
the Ptolemy Federate and vice versa, when the Ptolemy 
model sends a data and requests time advanc-ing, it 
will wait the MPSoC model requests a time advancing, 
before sending a new byte.

The federates from both models calculate the 
next time ad-vance value by adding its respective 
lookahead to the current federate time. Since the time 
advance is made in a discrete man-ner, the lookahead 
value from both federates was defined as 1, i.e., every 
time advance requested by any of these federates, when 

Figure 5. Estimated power consumption of MIPS processor.

Figure 6. Estimated power consumption of Message Generator 
processor.

Figure 7. Estimated power consumption of Message Generator 
and MIPS.
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granted, will imply the sum of 1 time unit in the cur-
rent federate time.

It was also defined that the Ptolemy model 
would only gen-erate data at the moment which the 
MPSoC model needs to read the first byte. Thus, the 
Ptolemy model was configured to gen-erate bytes from 
HLA time 13. The HLA time 13 represents 13 cycles 
of 13 µs each in SystemC simulated time, i.e., 169 µs. 
This is the necessary time to initialize the processor 
and the applica-tion (SHA) on MPSoC. Consequently, 
at 182 µs from SystemC simulated time, i.e., at HLA 
time 14, the value of first byte (65 in decimal notation) 
will be available in the MPSoC main memory.

When the MPSoC receives a byte from Ptolemy 
model, through the callback Reflect Attribute Values†, 
implemented into the MPSoc Federate Ambassador, 
the value is read and writ-ten in the MPSoC main me-
mory. The algorithm responsible for writing the value 
received by the MPSoC Data Sender into the MPSoC 
main memory is presented in the Algorithm 1. As men-
tioned before, the bytes begin to be read from the main 
memory by the SHA application at 182 µs (SystemC 
simulated time).

The line 1, from the Algorithm 1, represents the 
moment which the MPSoC model must advance on 
time. The next time to advance will always be incre-
mented by 13 µs.

The next time to read (line 2, Algorithm 1) de-
fines the Sys-temC simulated time which the MPSoC 
model must initiate the reading of bytes from the Pto-
lemy model. The Ptolemy model was synchronized to 
send data at HLA time 13. For the MPSoC model, the 
next time to advance was defined initially as 182 µs. 
Thus, at HLA time 14, the MPSoC model will start 
reading the bytes sent by the Ptolemy model. Every 
byte written in MPSoC memory implies a sum of 13 µs 
to the time for the next reading (line 6, Algorithm 1).

Thus, at the SystemC time 182 µs, i.e., at the 
HLA time 14, the MPSoC model will read the first 
byte sent by the Ptolemy model at the HLA time 13. 
Next, the MPSoC model will write this byte in the first 
memory address used by the SHA application to store 
the message content.

The SHA application will continue requesting 
new data from Ptolemy model until the message size 
is reached. It reads a set of bytes written in consecutive 
address. The address of the first byte read by the appli-
cation in the MPSoC main memory was discovered by 
experimentation. This address is denominated base ad-
dress (line 4, Algorithm 1).

For each received byte, the next address to write 
the byte is incremented by 1. This increment ensures 
that the incoming bytes are written in consecutive ad-
dress into the MPSoC main memory. The synchroniza-
tion between the MPSoC model and Ptolemy model is 
presented in Figure 8.

C. Experimental Results

In order to evaluate the impact of simulation on 
performance when using PowerHLA approach, two 
experiments were conducted. The first experiment 
consisted on verifying the simula-tion time of the MP-
SoC model when executing 1000 rounds of the SHA 
application, using messages with 8 bytes each. In this 
experiment, the MPSoC model exchanged data with 
the Ptolemy model in a synchronized and distributed 
way via HLA, without using the PowerHLA set of 
classes and methods for transmitting and receiving 
power estimation data. This set of classes are rep-re-
sented by the following elements in Figure 4: MPSoC 
Power Sender, Ptolemy Power Sender and Monitor 
Federate.

The second experiment was similar, however, 
using the Pow-erHLA classes and methods for trans-
mitting and receiving power estimation data. In the 
Table 1 the simulation time is presented comprising 
both experiments.

Table 1. Simulation Summary

Experiment Simulation Time (s)

1. PowerHLA without power collecting 46

2. PowerHLA with power collecting 54

Algorithm 1. Code responsible for writing data into the MP-SoC 
main memory
                                                                                                                 
1:	 if The SystemC time is equal or greater than next time to  
	 advance then
2:	 if The SystemC time is equal or greater than next time to  
	 read and the counter is less than message size then
3:	 Read the next byte from Ptolemy model
4:	 Set the next address to write the byte as the base ad 
	 dress plus the counter value
5:	 Write the byte into MPSoC memory in the next address  
	 to write
6:	 Set the next time to write as its value plus 13 µs
7:	 Increment the counter by 1
8:	 end if
9:	 Advance the time to a value calculated by summing the  
	 current federate time plus lookahead value
10:	 Set the next time to read as its value plus 13 µs
11:	 Set the next time to advance as its value plus 13 µs
12:	 end if                                                                                               

Figure 8. Data synchronization between the MPSoC Federate 
and Ptolemy Federate
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The second experiment, when compared with 
the first one, has an increasing of 17% in simulation 
time. Adding the Pow-erHLA set of classes and me-
thods means to add power estima-tion information in 
federation data flow. These methods define the code 
portion for transmitting and receiving power estima-
tion data.

Furthermore, this addition implies a new federa-
te in simu-lation: the Monitor Federate. Consequently, 
this addition also results in an increase of RTI services 
calls for synchronization.

In order to evaluate the power estimation 
values, a third experiment was executed. Instead of 
receiving messages from the Ptolemy model, the 
8 bytes were written directly in the memory, whi-
ch could be read during 1000 rounds of the SHA 
application. Thus, in contrast to the last two expe-
riments, the third didn’t use the PowerHLA appro-
ach.

The third experiment was executed in order to 
compare the total power dissipated by its processor 
core and the processor core from the cores of the two 
last experiments, as well as the simulated time.

In all the experiments, the simulated time was 
0.485 seconds. Similarly, the total dissipated power by 
the processor core in all the experiments was 0.158 
W, which demonstrates that the approach does not in-
terfere in the simulation consistence and in the power 
estimation approach adopted by MPSoCBench pla-
tform.

V. CONCLUSIONS

In this work, we presented an HLA based 
approach to enable the creation of a distributed and 
heterogeneous design environment, composed by dif-
ferent tools and models. These models were described 
in different languages at system level (ESL). They used 
different power estimation approaches during the si-
mulation.

The experimental results show the flexibility 
and effective-ness of PowerHLA. The models em-
ployed in case study were described in SystemC and 
Java. The HLA allowed the Ptolemy framework and 
SystemC simulator operate in a combined way syn-
chronously. The MPSoC model used a power esti-
mation ap-proach called PowerSC. For the Ptolemy 
model, arbitrary energy values were generated at each 
sending byte, mimicking a power estimation appro-
ach.

The use of HLA enables the synchronized and 
distributed simulation of the elements that compose 
the simulation environ-ment. The approach allows to 
collect and group power estima-tion data in a centra-
lized manner.
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