
159Journal of Integrated Circuits and Systems 2016; v.11 / n.3:159-170

An Approach for Power Estimation at
Electronic System Level using Distributed Simulation

Helder F. A. Oliveira1,2,*, Alisson V. Brito3, *, Joseana M. F. R. Araujo1 and Elmar U. K. Melcher1

1Universidade Federal de Campina Grande (UFCG), Brazil
2Universidade Federal Rural do Semi-Árido (UFERSA), Brazil

3Universidade Federal da Paraiba (UFPB), Brazil
*Corresponding author: helder.oliveira@ufersa.edu.br, alisson@ci.ufpb.br

ABSTRACT

The present research aims to develop an approach using HLA (High Level Architecture), enabling the cre-ation of
a distributed and heterogeneous environment, composed by different tools and models to obtain a better trade-off
between accuracy and run time in power estimation. These models can be described in different languages and/
or abstraction levels, as well as use different power estimation approaches. The use of HLA enables the synchro-
nized and distributed simulation of the elements that compose the simulation environment. The approach must
allow the collecting and grouping of power estimation data in a centralized manner. As a case study, an MPSoC
(MultiProcessor System-on-Chip) ESL/TLM model, described in C++/SystemC, and an ESL model, created on
Ptolemy framework, have been used. The experimental results show the flexibility of the approach, which promo-
tes an integrated view of power estimation data.

Index Terms: power estimation, electronic system level, distributed simulation

I. INTRODUCTION

There are several reasons to reduce the energy
consumed by an SoC: reduction of thermal wearing;
cooling cost reduction of the electronic device; increase
of the operating time per battery charge, among others
[1].

The impact of the power generation to meet
the needs of electronic devices is directly linked to the
environment. This has as main consequence the emis-
sion of greenhouse gases in the atmosphere (carbon
footprint) and can accelerate the process of global war-
ming and air pollution.

Therefore, power consumption is one of the
main concerns during the design of an SoC (System
-on-a-Chip). Recent re-searches are dedicated to power
consumption estimation in SoC design [2] [3] [4] [5]
[6] [7] [8]). Each of these works is focused on a dif-
ferent abstraction level and is based on a different esti-
mation approach [9].

Among the possible abstraction levels, the most
important ones are the ESL (Electronic System Le-
vel), RTL (Register Trans-fer Level), Gate level and
Transistor level [10]. Designers must consider power
consumption issues as early as possible to re-duce deve-
lopment time [5]. The higher is the level of abstraction

where designers can obtain information about power
consump-tion, cheaper are eventual modifications in
design.

In addition, high-level specifications allow the
designer to ignore several RTL coding issues, such as
synchronization and scheduling operations, while cap-
turing the project features [2]. In this context, power
consumption estimation at the system level (ESL) has
become an important research topic in recent years.
Many of the methodologies focus on the relationship
between power estimation accuracy and its computa-
tional cost at ESL level [2] [5] [6] [11].

Diverse authors agree that the main challenge to
develop power estimation tools at ESL is to reach the
most adequate balance between simulation performan-
ce and accuracy [5] [12] [8] [9].

Due to complexity of the projects and the time
pressure be-tween product specification and time-
to-market, it is not always possible to realize power
consumption estimation at RTL level (Register Trans-
fer Level) or at logic gates level for a whole sys-tem.
Thus, it is crucial to estimate the power consumption
as soon as possible during the project of a digital cir-
cuit design.

During the last years researches proposed power
consump-tion estimation approaches at ESL [2] [10]

An Approach for Power Estimation at Electronic System Level using Distributed Simulation
Oliveira; Brito; Araujo & Melcher

160 Journal of Integrated Circuits and Systems 2016; v.11 / n.3:159-170

[4] [5] [13] [9]. De-pending on the project comple-
xity, it is necessary to combine different elements to
provide an adequate power estimation, such as, diffe-
rent estimation approaches, different tools or, dif-fe-
rent programming languages and different abstraction
levels.

However, integrate these heterogeneous ele-
ments in a unique design environment, while exchan-
ging data among them and keeping the overall system
consistent, is a challenge and is the main focus of this
work.

For this integration, High-Level Architecture –
HLA offers mechanisms to enable applications, tools
and simulation to ex-change information in a synchro-
nous way [14]. HLA is defined as a common architec-
ture for modeling and distributed simula-tion.

This research has the objective of developing
an approach using High-Level Architecture (HLA) to
allow the creation of a distributed and heterogeneous
simulation environments, com-posed of different tools
and models. These models can be de-scribed in diffe-
rent languages and/or levels of abstraction, and also
enables different approaches to estimate the power
con-sumption. The use of HLA allows simulations in
a synchro-nized and distributed manner. The presen-
ted approach provides the estimation and collection
of power consumption data in a centralized way. For
study case, an experiment is presented where an ESL
model running in Ptolemy is co-simulated with an Sys-
temC-TLM model. Each one estimates power using a
different approach and all the data is collected in cen-
tralized way.

II. RELATED WORK

The total energy consumption of an integrated
circuit is the sum of dynamic and static energy con-
sumption [15]. Techniques to reduce dynamic power
became common. With CMOS process technology
lower than 90nm, the static power (leakage power)
has become important, and in many cases become a
dominant restriction to design [16].

Techniques for reducing energy consumption
can be applied at various levels of abstraction during
the development of an SoC, from system specification
to layout generation [15]. A sum-mary of the main
techniques for energy consumption reduction can be
found in [17].

As well as techniques for energy consumption
reduction, power consumption estimation in an SoC
can be performed at various levels of abstraction. Ac-
cording to [18], the power consumed by a digital cir-
cuit can be estimated at four differ-ent levels of abs-
traction: transistor-level, gate-level, Register Transfer
Level (RTL) and Electronic System level (ESL).

The main challenge for power consumption
estimation tools is to achieve the most adequate ba-
lance between performance and accuracy [5] [8] [9].
To reduce energy consumption in a final product of
a hardware design, it is beneficial that the power con-
sumption estimation can be performed since the very
beginning of the design flow [9].

Tools for power consumption estimating at
lower levels of abstraction allow accurate energy mo-
deling, but result in longer simulation run time and
higher design cost [5] [1].

Methods for power estimation with a low le-
vel of abstrac-tion (e.g., layout, gate level and RTL)
take into account many details of the simulated SoC,
making simulations slower and in-creasing the design
time. The slowness of these methods can be conside-
red as an obstacle to productivity [9]. Thus, estimation
techniques at a higher level of abstraction (e.g., ESL)
are desired.

ESL power consumption estimation techniques
perform esti-mations based on system descriptions at
higher level of abstrac-tion using energy consumption
models (power models).

A power model can be defined as a model that
captures the dependence of power dissipation of a de-
sign block based on certain parameters, such as swit-
ching activity, capacitance, etc. Its accuracy is very de-
pendent on the model of computation, input/output
activities, capacitance, etc [2].

Many works in power estimation scope try to
focus on esti-mating the power consumption using di-
fferent power models, in order to provide more accura-
te power estimation. These power models usually vary
in terms of granularity [19] [13] [20] [21], allowing
the designer to decide which use to achieve a good tra-
de-off between accuracy and efficiency.

In [19] the authors propose a power estimation
framework that integrates heterogeneous component
power models us-ing a network of “power monitors”.
Power monitors enable each component model to be
associated with multiple (distinct) power models of di-
ffering accuracy and efficiency, or with con-figurable
power models which can be tuned to different accu-ra-
cy/efficiency levels.

Authors from [13] have developed a system-le-
vel power esti-mation framework which uses different
power modeling tech-niques for each component:
processor cores, bus fabrics, custom IP blocks and me-
mories. The authors highlight the fact that an SoC has
many heterogeneous components with varying power
characteristics, ranging from very regular structures
such as on-chip SRAM to irregular custom IP blocks
such as video codec, what makes difficult to derive a
single modeling methodology that covers every compo-
nent constituting an SoC device. Thus, different appro-
aches need to be adopted for different compo-nents.

An Approach for Power Estimation at Electronic System Level using Distributed Simulation
Oliveira; Brito; Araujo & Melcher

161Journal of Integrated Circuits and Systems 2016; v.11 / n.3:159-170

In another work [20] is presented a hierarchical
power charac-terization model that is applicable to any
kind of custom IP. The power model has several levels
that have varying accuracy, sim-ulation speed and de-
sign effort. These levels define the power models accu-
racy. Upper levels represent coarser grained power mo-
dels, while lower levels represent more accurate power
mod-els, i.e., with greater detail. The methodology
was applied on an H.264 decoder prediction IP.

Similarly, in [21] was developed an ESL power
estimation framework based on an interface which
allows to integrate vari-ous power models. Designers
can choose either the fine-grained or coarse-grained
power models according to the trade-off be-tween ac-
curacy and computing cost. For evaluating power esti
-mation framework, PAC (Parallel Architecture Core)
Duo system [22] was adopted as the study case.

Several works concerning power estimation
at ESL (Elec-tronic System Level) or RTL (Register
Transfer Level) implement their approach extending
the SystemC functionality, by modi-fying the SystemC
library [23] or adding new libraries [24] [25] [26].

The authors in [23] modify the SystemC class
library to allow the calculation of energy consumption
of hardware described at ESL. According to the au-
thors, the SystemC class library was modified in order
to receive a new set of classes for power esti-mation, so
called Powersim. The Powersim operation is based on
monitoring the C++ operators, when called on Sys-
temC data type. Different energy models are used for
each data type. This method does not require any chan-
ge in the application source code to obtain the energy
consumption during a SystemC simu-lation.

In [24] the SystemC class library was extended
with new classes describing area, delay and power cha-
racteristics of the SystemC RTL models.

A framework called PowerSC is presented in
[25]. Here, the authors instruments SystemC for
power characterization, mod-eling and estimation.
The key idea was to extend SystemC by adding power
-aware C++ classes. The PowerSC framework pro-vi-
des an API to support the integration of alternatives
estimation techniques. To use the framework, only two
modifications are necessary in the SystemC description
to enable PowerSC usage: The inclusion of the main
PowerSC header file within the model files, and the
invocation of a PowerSC macro in the end of the simu-
lator’s main function, in order to print out the results.
The PowerSC framework can be used at ESL, RTL or
gate-level.

In [26] the authors developed a library which
extends every SystemC module with non-functional
data regarding physical layout and power consumption
and which accumulates and estimates dynamic ener-
gy usage. The work is based in two pre-vious libraries
for SystemC power modeling: TLM POWER2 [27]

and PKtool [28]. The work supports both phase/mode
power modeling and energy-per-transaction logging
for TLM (Transactional-Level Modelling). The state
of an IP block is char-acterized by both its phase and
mode. A phase is characterized by its power and time
duration (e.g. read, wait, compute), and mode, the ac-
tual operation mode (e.g. on, off, sleep).

Depending on the project requirements, to gua-
rantee a better accuracy in power estimation, it might
be necessary to estimate the power consumption of a
system or part of it using differ-ent elements: different
power estimation approaches, tools or, even, models
described in different languages and/or abstrac-tion le-
vels. Nevertheless, it is a challenge to incorporate these
elements to create a simulation environment distribu-
ted and heterogeneous, which allows these elements to
communicate and exchange information synchronou-
sly.

The SoC designer needs to evaluate which abs-
traction levels and estimation techniques are the most
adequate for each part of the SoC in the particular
application context. Then a frame-work is needed,
which enables the designer to integrate these abstrac-
tion models and power estimation techniques into one
unique simulation that provides centralized informa-
tion on the overall power consumption.

To the best of our knowledge, none of the afo-
rementioned works uses a general purpose architecture
for modeling and dis-tributed simulation, such High
-Level Architecture (HLA), in or-der to allow the cre-
ation of a heterogeneous and distributed sim-ulation
environment, composed by different tools, models de
-scribed in different languages and/or abstraction le-
vels, which enables the use of different power estima-
tion approaches for each model during the simulation.

A. High-Level Architecture (HLA)

In order to allow a simulation environment dis-
tributed and het-erogeneous, composed by different
tools, models described in different languages and/or
abstraction levels, adopting different power estima-
tion techniques, we used the High-Level Architec-ture
(HLA) in our approach.

High-Level Architecture (HLA) is a general
-purpose archi-tecture defined by Defence Modelling
and Simulation Office (DMSO) to support reusability
and interoperability using a wide number of different
types of simulators, which are maintained by U.S De-
partment of Defense (DoD) [14]. The standard defines
this architecture having three parts: the first explores
the frame-work in a general way and its main rules, the
second deals with the interface specifications between
simulators (HLA), and the third deals with the speci-
fication model of data (OMT) which are transferred
between simulators.

An Approach for Power Estimation at Electronic System Level using Distributed Simulation
Oliveira; Brito; Araujo & Melcher

162 Journal of Integrated Circuits and Systems 2016; v.11 / n.3:159-170

The HLA has a time managing service to syn-
chronize data between heterogeneous models. The
main goals of HLA are to enable the interoperation of
distinct models and reuse them when necessary, to pro-
vide a distributed simulation environ-ment for systems
that need large scale computing.

The principal idea of HLA is to separate the spe-
cifics function-ality of each simulator using a general
proposal infrastructure (see Figure 1). Each simulator
needs to use the RunTime Infras-tructure (RTI) to
communicate to HLA and others simulators. The RTI
is responsible for the specific structures of each simu-
la-tor to interface with the global structure of HLA.
Each simulator that is connected to one RTI is called
a Federate. The set of all federates managed by one
RTI is called a Federation. In cases of geographically
distributed simulations, it is also possible to have many
Federations in a same simulation environment.

Analogous to how a distributed operating sys-
tem provides services to applications, the RTI provi-
des services to federates. These services are used, basi-
cally, for synchronizing the feder-ates and controlling
the data exchange between them. These interfaces are
arranged into seven basic service groups: Federa-tion
management, Declaration management (DM), Object
man-agement, Ownership management, Time mana-
gement, Data distribution management (DMM) and
Support services (refer to [29] for details).

In our approach, each Federate can be an in-
dependent sim-ulator (i.e., SystemC, Matlab, Ptolemy,
etc.) or even part of a system running in a simulator.

In HLA, an object-oriented paradigm is used to
describe data, called Federate Object Model (FOM).
There, it is possible to describe classes, objects, attri-
butes and hierarchy of classes. Once configured, all fe-
derates read and write attributes of the objects defined
by FOM. HLA uses publish-subscribe protocol, thus
every federate must announce the subscribed object
and which object it can publish. In our approach, all
the federates subscribe and publish all objects and at-

tributes. The description of these objects is presented
following. For more details about Federation Object
Model (FOM) rules and syntax, refer to [29].

(FED
 (Federation TestFed)
 (FEDversion v1.3)
 (spaces)
 (objects
 (class PowerHLA
 (attribute privilegeToDelete reliable timestamp)
 (class RTIprivate)
 (class module
 (attribute id reliable timestamp)
 (attribute energy reliable timestamp)
 (attribute module reliable timestamp)
)))
 (interactions))

B. MPSoC Modeling

In our case study we use a benchmark composed
of a scalable set of MPSoCs described in C++/SystemC,
called MPSoCBench [30]. MPSoCBench is a simulation
toolset composed of a scal-able set of MPSoCs useful for
the development and high level evaluation of new tools,
methodologies, software, and hardware components.
This tool provides a complete open source simu-lation
infrastructure including scalable hardware and software
components, with easy instrumentation and fast simula-
tion at different abstraction levels.

The toolset supports four different ISAs in many
configurable and scalable MPSoC platforms with up to
64 cores, with differ-ent interconnections at different
simulation abstraction levels. The user provides para-
meters to create MPSoC simulators and the script ge-
nerates appropriate code for processors, intercon-nec-
tions, caches, memories, and IPs. These components
are compiled to create one or more MPSoC simulators
that will be stored in specific folders. The set of appli-
cations (e.g., Secure Hash Algorithm, Dijkstra, Fast
Fourier Transform, etc.) are com-piled with the appro-
priate cross-compilers, and the executable files are sto-
red together with the simulators. After executing each
simulation, a proof of correctness is performed evalua-
ting the application output files against a golden result.

The MPSoCBench includes SPARC and MIPS
processors mod-els based on the LEON3 and PLAS-
MA RTL models. The power consumption model for
these processors use PowerSC [25] framework. This fra-
mework instruments SystemC for power characteriza-
tion, modeling and estimation in multiple abstrac-tion
levels. Its basic idea is to extend the SystemC library,
adding C++ classes which enable power estimation.

The power models are based on different FPGA
and ASIC technologies. Some key usages are power Figure 1. Architecture of HLA Federation

An Approach for Power Estimation at Electronic System Level using Distributed Simulation
Oliveira; Brito; Araujo & Melcher

163Journal of Integrated Circuits and Systems 2016; v.11 / n.3:159-170

consumption evalu-ation during program execution,
detecting power bottlenecks, and comparison among
different architectures.

Using the PowerSC framework, when a Sys-
temC class is compiled, an augmented executable spe-
cification is generated (by linking both, the SystemC
and PowerSC libraries), instead of a conventional exe-
cutable specification (by linking the SystemC library
only). The augmented specification is instrumented to
gather signal statistics during simulation.

When the simulation is launched, the design ele-
ments are monitored and power information is dyna-
mically recorded. At the simulation end, the resulting
information is summarized in power reports.

The authors of PowerSC highlight that the ef-
fort to enable the power estimation mechanism is mi-
nimal, since SystemC data types, signals and modu-
les do not need to be manually changed, because the
PowerSC framework modifies them automatically.

In our case study, an MPSoC SystemC TLM
model built by the MPSoCBench communicates with
an ESL Ptolemy model via HLA.

C. Embedded System Modeling

Due to its close coupling with the environment,
Embedded Sys-tems normally include different com-
ponents with heterogeneous Models of Computation
(MoC). Thus, tools with high abstrac-tion power are
necessary in order to model, simulate and test all such
MoCs, e.g., Finite State Machines (FSM), Synchro-
nous Data Flow (SDF), Discrete Events (DE) and
Continuous Time (CT). The Ptolemy II framework
[31] is an example of a simulation and modeling tool
intended to support system designs that involve com-
bining different MoCs.

In Figure 2 is possible to see the main compo-
nents presented by Ptolemy’s GUI, called Vergil. The
Director manages the simu-lation according to its Mo-
del of Computation. It is also possible to see that there
are two kinds of actors. The Atomicare the indivisible
ones and the Composite Actors can aggregate other
actors or complete designs (also with different Models
of Com-putation) inside it. These hierarchical actors
are the strategy of Ptolemy to have heterogeneous Mo-
dels of Computation in a same simulation model. The
actors exchange data among them (called Tokens) via
Ports and Relations.

In this work, Ptolemy is used as one of the si-
mulators in the proposed approach and the power con-
sumption is estimated by random values produced only
as proof of concept. Ptolemy was integrated to HLA
using a prior development by our research group [32].

III. THE POWER ESTIMATION APPROACH

The developed approach is shown in Figure
3. All the elements were developed using C++/Sys-
temC. The elements of the ap-proach are described as
following.

A. Data Sender

The Data Sender is responsible for exchanging
data among inter-nal and external modules (blue ar-
rows in Figure 3) and also to synchronize internal with
external modules. The manner how to define the syn-
chronization and data exchange between the simulated
models will be application dependent. In Section 4 is
presented a study case describing in details how models
were synchronized.

Application data is sent from a simulated model
in a feder-ate to other federates through the RTI ser-
vice1 Update Attribute Values†, executed by the Federate
Ambassador. From the re-ceiver side, the Federate Am-

Figure 2. Example of Ptolemy GUI [31]

Figure 3. The developed approach

1All RTI-initiated services are denoted with a †(dagger) after the service name .

An Approach for Power Estimation at Electronic System Level using Distributed Simulation
Oliveira; Brito; Araujo & Melcher

164 Journal of Integrated Circuits and Systems 2016; v.11 / n.3:159-170

The methods for data application exchan-
ging and for syn-chronizing must be coded by the
PowerHLA user, since these methods are application
dependent. Consequently, the user must implement
these methods into the PowerHLA interface code.

The PowerHLA Interface is also responsible
for creating its respective Sender Federate and to deal
with HLA initialization aspects. It was implemented
according with the Singleton de-sign pattern. Single-
ton ensures that a class has only one instance, and pro-
vides a global pointer to access it. This design pattern
was used in order to provide an easy way to call the
PowerHLA Interface methods from any place in the
code, without instan-tiating the object every time it is
necessary to call any of its methods.

The manner which the Power HLA Interface was
imple-mented facilitates its extension to work with other
languages and simulators. In our federation, we have a
PowerHLA Inter-face instance for each Sender Federate.

E. RunTime Infrastructure

The RTI (RunTime Infrastructure) is the sof-
tware that provides common interface services, during
a High Level Architecture (HLA) federation execu-
tion, for synchronizing and data exchang-ing [29].
The RTI contains the implementation of the services
initiated by the federates. In this project, we have not
imple-mented the RTI, but have used an open-source
RTI called CERTI [33].

F. RTI Ambassador

Communication from a federate to the RTI is
established via the RTI Ambassador. Each federate re-
quests services on RTI via RTI Ambassador. Services
initiated by federates on RTI are denominated Fede-
rate Initiated Services (FIS). There are several FIS,
among which can be cited: Publish, Subscribe, Regis-
ter, Update, etc.

The RTI Ambassador is part of the functional
structure of the RTI. Therefore, as well as the RTI,
the RTI Ambassador was not implemented during the
development of the PowerHLA approach, but used the
one from CERTI.

G. Monitor Federate

The Monitor Federate Ambassador is the inter-
face between the RTI and the HLA Power Monitor.
The Monitor Federate Ambas-sador and the HLA
Power Monitor form the Monitor Federate. The fede-
ration have a unique instance of the Monitor Federate,
which collect all power estimation data from all the fe-
derates in the simulation. The Monitor Federate Am-
bassador is responsi-ble for receiving power estimation

bassador will be notified by the RTI-initiated service
(callback) Reflect Attribute Values†, which forward the
received data to the Data Sender.

B. Power Sender

The Power Sender is responsible for sending
the estimated en-ergy accumulated by each monito-
red component (red arrows in Figure 3). A monitored
component is a piece of code, usually a functional mo-
dule, which the designer wants to monitor. The same
Power Sender can monitor various components.

The power consumption estimation is sent to
the Monitor Federate according to a predefined time
interval, through the Federate Ambassador via Update
Attribute Values† service. Thus, all the estimated ener-
gy data accumulated from each monitored component
is sent to the Monitor Federate, and then all the respec-
tive energy related variables are set to zero in order to
restart the accumulation of estimated energy.

All power consumption estimation data trans-
mitted from the Sender Federate is received orderly by
the Monitor Federate, which is responsible to accumula-
te the power estimation from all simulators (Federates).

C. Federate Ambassador

The RTI communication with a Sender Federa-
te is established via a Federate Ambassador. Each Sen-
der Federate has a Federate Ambassador instance. This
ambassador is responsible for receiv-ing application
data from all models, as well as for forwarding respon-
ses according to service requests made from RTI, also
known as callbacks (green arrows in Figure 3).

For example, when RTI receives a data from
other model, the Reflect Attribute Values† callback is
executed at Federate Ambas-sador, which will notify
the destination module.

Regarding time management, a Sender Federate
can request a time advance on RTI. When the request
is granted, the RTI sends a response to the Sender Fe-
derate via Sender Federate Ambassador, through the
callback Time Advance Grant. There other RTI-ini-
tiated services, among which can be cited: Discover,
Reflect, Time Regulation Enabled, Time Constrained
Enabled, etc.

The set composed by Data Sender, Power Sender
and Feder-ate Ambassador will be denominated Sen-
der Federate. Every model which uses the PowerHLA
approach, have necessarily a Sender Federate.

D. PowerHLA Interface

This element provides all the necessary methods to
collect power estimation data during the simulation. The-
se methods are call-ings to the Sender Federate methods.

An Approach for Power Estimation at Electronic System Level using Distributed Simulation
Oliveira; Brito; Araujo & Melcher

165Journal of Integrated Circuits and Systems 2016; v.11 / n.3:159-170

data from all other models, as well as for communicate
with RTI via callbacks for control and synchronization.

Since it is a federate, the Monitor Federate also
request ser-vices from RTI (e.g., Create Federation Exe-
cution, Time Advance Request, etc). It is also respon-
sible for creating the federation and signalize synchro-
nization points to ensure that it will start only when all
other Federates signalize they are ready as well.

During the simulation, CSV (Comma Separated
Values) files are generated by the Monitor Federate. For
each Sender Feder-ate, the Monitor Federate generates
a CSV file which contains data about the accumulated
estimated energy from its respec-tive monitored com-
ponents during each predefined collecting interval.

H. Other Relevant Details

The developed approach has a file at Sender and
Manager code side, called defines.h, where the designer
must define a set of constants in order to configure the
simulation environment. The environment comprises
two sides, one to deal with power, and other to deal with
HLA. Some of most important constants from Sender
Federate that deal with power are shown as following:

•	POWER_COLLECTING_INTERVAL: The
time interval which the Sender Federate must
send the power collected data to the Manager
Federate. The unit is defined by the INTER-
VAL_UNIT constant;

•	INTERVAL_UNIT: The time interval unit. It
can be, for example, SC_US to define the time
interval unit as microsec-ond;

•	NUMBER_OF_MONITORED_COMPO-
NENTS: The total number of monitored com-
ponents (it can be a module, a set of modules, a
complete SoC, etc.).
We also have constants to deal with the HLA:

•	SENDER_FEDERATE_NAME: The Sender
Federate name. This name must be unique in
the Federation;

•	SENDER_FEDERATE_LOOKAHEAD: The
federate Looka-head (see [29] for details);

•	SENDER_FEDERATE_TIME_STEP: The fe-
derate Time Step (see [29] for details).
The Monitor Federate has only the constants

needed to deal with the HLA. These constants are si-
milar to the Sender Federate constants.

IV. RESULTS

In this section, a set of experimental results
using the proposed approach through one case study
is presented. The case study uses two models: an MP-
SoC SystemC TLM model built by the MPSoCBench
platform and an ESL Ptolemy model. The MP-SoC

SystemC TLM model consists of a MIPS processor
with one core, memory and a Network-on-chip for in-
terconnection. The Ptolemy model consists of an ESL
model for generating messages (character stream),
which will be synchronously con-sumed by the MP-
SoC model. The present case study aims to demonstra-
te the PowerHLA capability of creating a distributed
and heterogeneous simulation environment.

The experiment demonstrates that models using
different languages, as well as different power estima-
tion approaches, could be distributed and simulated
using different tools in a synchronized way, besides
allowing, in a centralized manner, the grouping and
collecting of power estimation data of these models.

A. The Case Study

The MPSoC model executes a cryptographic hash
function called Secure Hash Algorithm (SHA). Given an
input data (e.g. a string), known as message, the SHA
algorithm produces an output, called message digest.
Cryptographic hash functions are vastly applied in the
information security scope and data integrity checking.

The Ptolemy message generator creates data
(bytes), which will be consumed by the SHA applica-
tion running in the MPSoC model. The data genera-
tion is synchronized with the MPSoC SHA application.
When the SHA application requests a byte, an HLA
function is called, which makes the application in MP-
SoC waits for a message coming from Ptolemy model.
The Ptolemy model only sends a new data (byte) when
it receives a confirma-tion from MPSoC, ensuring the
data reception. These process are blocking, i.e., they
pause the simulated time. In Figure 4 is shown the si-
mulation environment for the SHA application.

Figure 4. Execution Environment for the SHA Application

An Approach for Power Estimation at Electronic System Level using Distributed Simulation
Oliveira; Brito; Araujo & Melcher

166 Journal of Integrated Circuits and Systems 2016; v.11 / n.3:159-170

The bytes created by the Message Generator are
sent through the Ptolemy Federate via RTI, to the MP-
SoC Federate. The MP-SoC Federate, in turn, receives
these bytes and makes them available for writing them
in the MPSoC main memory. This data is read by the
SHA application running in MIPS. This ap-plication
datapath is represented by the blue arrows in Figure 4.

For each byte received by the MPSoC Federate,
the main memory must request a new byte to the Mes-
sage Generator at Ptolemy model, as SHA needs a new
byte to compose the mes-sage. For each data reques-
ted, an HLA function is called (via MPSoC Federate),
which blocks the SHA execution until the re-quested
data arrives. After receiving the data, the main memory
requests a new data, confirming the receipt of the pre-
vious data. The bytes are requested until the message
size is reached. This path is represented in Figure 4 by
the purple arrows.

After receiving all bytes which compose the
message, the SHA application is executed, and a re-
port is generated in the end, indicating that the SHA
finished its execution. As output, the application gene-
rates the message digest.

All federates request services to the RTI and also
receive responses related to these requests. This path is
represented by the green arrows in Figure 4.

In a detailed view, the MPSoc Federate is com-
posed by three elements: The MPSoC Data Sender, the
MPSoC Federate Ambas-sador and the MPSoC Power
Sender. The MPSoC Data Sender is the element respon-
sible for making available the application data, received
from Ptolemy Message Generator, which will be written
into the MPSoC main Memory. The power estimation
data generated by the processor core (MIPS) is transmit-
ted by the MPSoC Power Sender. The application data
and the power estimation data are received and send,
respectively, through the MPSoC Federate Ambassador.

Similarly, the Ptolemy Federate is composed by
three ele-ments: the Ptolemy Data Sender, the Ptolemy
Federate Am-bassador and the Ptolemy Power Sender.
The Ptolemy Data Sender is responsible for transmit-
ting the bytes generated by the Ptolemy Message Ge-
nerator to the MPSoC Federate. The estimated power
consumption data from the Message Genera-tor is
transmitted by the Ptolemy Power Sender. The Pto-
lemy Federate Ambassador has an equivalent role to
MPSoC Federate Ambassador.

Both federates use the RunTime Infrastructure
(RTI) as a means to transmit the application data. The
RTI implementation used in the case study was the
CERTI [33].

The experiment is comprised in sending eight
bytes from the Ptolemy model to the MPSoC model.
Each sent byte represents an ASCII character. The de-
cimals 65, 66, 67, 68, 69, 70, 71 and 72 were set, re-
presenting the characters “ABCDEFGH”.

Once the bytes are received, they are written in
the main memory of MPSoC model. Upon receiving
all eight bytes, which composes the message, the SHA
application reads the characters stream (message) and
calculates the message digest.

The collecting of power estimation data from
the simulated models is made by the Monitor Federate
(Figure 4). This federate is composed by two elements:
the Monitor Federate Ambassador and the HLA
Power Monitor. The Monitor Federate organizes and
groups the received power estimation data from the
models, generating as output files in CSV (Comma-
Separated Values) format. The power estimation da-
tapath is represented by the red arrows in Figure 4.
The Monitor Federate, the RTI and the Ptolemy model
were executed in the same machine. The MPSoC mo-
del (SystemC) was executed in another computer. The
two computers were connected by Ethernet cables via
a switch.

The power consumed by the core in the MPSoC
model was estimated during the simulation, through
the power estimation approach called PowerSC [25].
For the Message Generator, from the Ptolemy model,
arbitrary energy values between 0.149 and 0.157 Jou-
les were generated at each sending byte, mimicking a
power estimation approach.

The processor core from MPSoC accumulates
energy values in Joules for each instruction executed.
The energy is accu-mulated during a user predefined
interval. Thus, when the predefined interval is reached,
the MPSoC Federate sends the accumulated energy
data to the Monitor Federate and reset all respective
energy values related to the processor core.

During the simulation, 97 samples were obtai-
ned. Graphi-cally, the power dissipated by the proces-
sor core is presented in Figure 5.

The Message Generator starts to send power es-
timation data when the first byte is generated, i.e., at
the HLA time 13 (Figure 6). For each byte generated
(at 1 HLA time unit), the Ptolemy model sends power
estimation data. Bytes are created by the Message Ge-
nerator until the HLA time is 20. Thus, the sending in-
terval for power estimation data from this component
com-prises the interval between the HLA time 13 and
HLA time 20. The power dissipation data from the Pto-
lemy Message Genera-tor are shown in Figure 6. The
combination of Figures 5 and 6 is presented in Figure 7.

Note that power estimation data are generated
by the Pro-cessor Core before the main memory reads
the first byte (Figure 7). This power consumption is
a consequence of the application loading in the main
memory as well as the variables initializa-tion, which
are needed during the application execution.

Power estimation data is also generated when
SHA reads all the 8 bytes from the main memory. This
interval is comprised between the HLA time 22 and

An Approach for Power Estimation at Electronic System Level using Distributed Simulation
Oliveira; Brito; Araujo & Melcher

167Journal of Integrated Circuits and Systems 2016; v.11 / n.3:159-170

97. This interval consists the application execution
phase, i.e., the interval which the message digest is cal-
culated.

B. Models Synchronization

The MPSoC Federate and Ptolemy Federate
were defined as time-regulating federate and time-
constrained federate. Furthermore, the MPSoC Fede-
rate subscribes the object class attributes from Ptolemy
Federate and vice versa. These characteristics guarantee
that the Ptolemy Federate do not advance the time to
a point beyond it could receive Time-Stamped Order
(TSO) messages from MPSoC Federate. Similarly, the
MPSoC Federate cannot advance in time to a point
beyond it could receive TSO messages from Ptolemy
Federate.

To synchronize the models, it was necessary to
verify the memory cycle from MPSoC model during
the SHA application execution. The memory cycle me-
ans the time which each byte (character) is read from
memory. Although the MPSoC model was not an RTL
(Register Transfer Level) model, the reading of each
byte from memory occurs approximately in an interval
of 13 µs of SystemC simulated time.

The reading of the first byte by the SHA appli-
cation from the MPSoC memory occurs in approxi-
mately 182 µs of SystemC simulated time. Before re-
ading the first byte, the processor is initiated and the
SHA application is transferred to the memory. Only
after this moment, the application will be ready to
execute.

Facing this periodicity regarding the byte rea-
ding, it was decided that the HLA time of the models
would advance in a discrete and constant manner. Du-
ring the discrete time simula-tion, the simulation time
is divided into a sequence of timesteps with same size.
Thus, both federates advance from a timestep to the
next. If this periodicity were not detected, the models
could be synchronized by events, i.e., the time advance
could be performed as all events for a given time were
executed.

For example, if the simulation is at HLA time 1,
it would advance to HLA time 2 only if all the events
from HLA time 1 had been executed. An event could
be, for example, the mo-ment which the MPSoC mo-
del needed to read a byte in the main memory. Its im-
portant to note that the HLA allows both im-plemen-
tation modes of synchronization: discrete time and by
events.

Thus, each advancing in time performed by the
MPSoC Fed-erate occurs at each 13 µs of SystemC
simulated time. It was also defined that the memory
cycle from MPSoC model would be equivalent to a
cycle for data sending from Ptolemy model. The Pto-
lemy model sends a byte every 1 Ptolemy time unit,
fol-lowed by the RTI time advance request. Thus, the
13 µs cycle from SystemC simulator, which executes
the MPSoC model, is equivalent to 1 unit time from
Ptolemy simulator.

Since the federates from both models are time
-regulating and time-constrained, and the MPSoC Fe-
derate subscribes class ob-ject attributes published by
the Ptolemy Federate and vice versa, when the Ptolemy
model sends a data and requests time advanc-ing, it
will wait the MPSoC model requests a time advancing,
before sending a new byte.

The federates from both models calculate the
next time ad-vance value by adding its respective
lookahead to the current federate time. Since the time
advance is made in a discrete man-ner, the lookahead
value from both federates was defined as 1, i.e., every
time advance requested by any of these federates, when

Figure 5. Estimated power consumption of MIPS processor.

Figure 6. Estimated power consumption of Message Generator
processor.

Figure 7. Estimated power consumption of Message Generator
and MIPS.

An Approach for Power Estimation at Electronic System Level using Distributed Simulation
Oliveira; Brito; Araujo & Melcher

168 Journal of Integrated Circuits and Systems 2016; v.11 / n.3:159-170

granted, will imply the sum of 1 time unit in the cur-
rent federate time.

It was also defined that the Ptolemy model
would only gen-erate data at the moment which the
MPSoC model needs to read the first byte. Thus, the
Ptolemy model was configured to gen-erate bytes from
HLA time 13. The HLA time 13 represents 13 cycles
of 13 µs each in SystemC simulated time, i.e., 169 µs.
This is the necessary time to initialize the processor
and the applica-tion (SHA) on MPSoC. Consequently,
at 182 µs from SystemC simulated time, i.e., at HLA
time 14, the value of first byte (65 in decimal notation)
will be available in the MPSoC main memory.

When the MPSoC receives a byte from Ptolemy
model, through the callback Reflect Attribute Values†,
implemented into the MPSoc Federate Ambassador,
the value is read and writ-ten in the MPSoC main me-
mory. The algorithm responsible for writing the value
received by the MPSoC Data Sender into the MPSoC
main memory is presented in the Algorithm 1. As men-
tioned before, the bytes begin to be read from the main
memory by the SHA application at 182 µs (SystemC
simulated time).

The line 1, from the Algorithm 1, represents the
moment which the MPSoC model must advance on
time. The next time to advance will always be incre-
mented by 13 µs.

The next time to read (line 2, Algorithm 1) de-
fines the Sys-temC simulated time which the MPSoC
model must initiate the reading of bytes from the Pto-
lemy model. The Ptolemy model was synchronized to
send data at HLA time 13. For the MPSoC model, the
next time to advance was defined initially as 182 µs.
Thus, at HLA time 14, the MPSoC model will start
reading the bytes sent by the Ptolemy model. Every
byte written in MPSoC memory implies a sum of 13 µs
to the time for the next reading (line 6, Algorithm 1).

Thus, at the SystemC time 182 µs, i.e., at the
HLA time 14, the MPSoC model will read the first
byte sent by the Ptolemy model at the HLA time 13.
Next, the MPSoC model will write this byte in the first
memory address used by the SHA application to store
the message content.

The SHA application will continue requesting
new data from Ptolemy model until the message size
is reached. It reads a set of bytes written in consecutive
address. The address of the first byte read by the appli-
cation in the MPSoC main memory was discovered by
experimentation. This address is denominated base ad-
dress (line 4, Algorithm 1).

For each received byte, the next address to write
the byte is incremented by 1. This increment ensures
that the incoming bytes are written in consecutive ad-
dress into the MPSoC main memory. The synchroniza-
tion between the MPSoC model and Ptolemy model is
presented in Figure 8.

C. Experimental Results

In order to evaluate the impact of simulation on
performance when using PowerHLA approach, two
experiments were conducted. The first experiment
consisted on verifying the simula-tion time of the MP-
SoC model when executing 1000 rounds of the SHA
application, using messages with 8 bytes each. In this
experiment, the MPSoC model exchanged data with
the Ptolemy model in a synchronized and distributed
way via HLA, without using the PowerHLA set of
classes and methods for transmitting and receiving
power estimation data. This set of classes are rep-re-
sented by the following elements in Figure 4: MPSoC
Power Sender, Ptolemy Power Sender and Monitor
Federate.

The second experiment was similar, however,
using the Pow-erHLA classes and methods for trans-
mitting and receiving power estimation data. In the
Table 1 the simulation time is presented comprising
both experiments.

Table 1. Simulation Summary

Experiment Simulation Time (s)

1. PowerHLA without power collecting 46

2. PowerHLA with power collecting 54

Algorithm 1. Code responsible for writing data into the MP-SoC
main memory

1:	 if The SystemC time is equal or greater than next time to
	 advance then
2:	 if The SystemC time is equal or greater than next time to
	 read and the counter is less than message size then
3:	 Read the next byte from Ptolemy model
4:	 Set the next address to write the byte as the base ad
	 dress plus the counter value
5:	 Write the byte into MPSoC memory in the next address
	 to write
6:	 Set the next time to write as its value plus 13 µs
7:	 Increment the counter by 1
8:	 end if
9:	 Advance the time to a value calculated by summing the
	 current federate time plus lookahead value
10:	 Set the next time to read as its value plus 13 µs
11:	 Set the next time to advance as its value plus 13 µs
12:	 end if

Figure 8. Data synchronization between the MPSoC Federate
and Ptolemy Federate

An Approach for Power Estimation at Electronic System Level using Distributed Simulation
Oliveira; Brito; Araujo & Melcher

169Journal of Integrated Circuits and Systems 2016; v.11 / n.3:159-170

The second experiment, when compared with
the first one, has an increasing of 17% in simulation
time. Adding the Pow-erHLA set of classes and me-
thods means to add power estima-tion information in
federation data flow. These methods define the code
portion for transmitting and receiving power estima-
tion data.

Furthermore, this addition implies a new federa-
te in simu-lation: the Monitor Federate. Consequently,
this addition also results in an increase of RTI services
calls for synchronization.

In order to evaluate the power estimation
values, a third experiment was executed. Instead of
receiving messages from the Ptolemy model, the
8 bytes were written directly in the memory, whi-
ch could be read during 1000 rounds of the SHA
application. Thus, in contrast to the last two expe-
riments, the third didn’t use the PowerHLA appro-
ach.

The third experiment was executed in order to
compare the total power dissipated by its processor
core and the processor core from the cores of the two
last experiments, as well as the simulated time.

In all the experiments, the simulated time was
0.485 seconds. Similarly, the total dissipated power by
the processor core in all the experiments was 0.158
W, which demonstrates that the approach does not in-
terfere in the simulation consistence and in the power
estimation approach adopted by MPSoCBench pla-
tform.

V. CONCLUSIONS

In this work, we presented an HLA based
approach to enable the creation of a distributed and
heterogeneous design environment, composed by dif-
ferent tools and models. These models were described
in different languages at system level (ESL). They used
different power estimation approaches during the si-
mulation.

The experimental results show the flexibility
and effective-ness of PowerHLA. The models em-
ployed in case study were described in SystemC and
Java. The HLA allowed the Ptolemy framework and
SystemC simulator operate in a combined way syn-
chronously. The MPSoC model used a power esti-
mation ap-proach called PowerSC. For the Ptolemy
model, arbitrary energy values were generated at each
sending byte, mimicking a power estimation appro-
ach.

The use of HLA enables the synchronized and
distributed simulation of the elements that compose
the simulation environ-ment. The approach allows to
collect and group power estima-tion data in a centra-
lized manner.

ACKNOWLEDGMENT

The authors would like to thank CAPES (Co-
ordenação de Aper-feiçoamento de Pessoal de Nível
Superior) and CNPq (Conselho Nacional de Desen-
volvimento Científico e Tecnológico) to sup-port this
project.

REFERENCES

[1]	 W. Huang, M. Stan, S. Gurumurthi, R. Ribando, and K. Ska-
dron, “Interaction of scaling trends in processor architecture
and cooling,” in “Semiconductor Thermal Measurement and
Management Symposium, 2010. SEMI-THERM 2010. 26th
Annual IEEE,” (2010), pp. 198–204.

[2]	 S. Ahuja, D. Mathaikutty, G. Singh, J. Stetzer, S. Shukla, and
A. Din-gankar, “Power estimation methodology for a high-le-
vel synthesis framework,” in “Quality of Electronic Design,
2009. ISQED 2009. Qual-ity Electronic Design,” (2009), pp.
541–546.

[3]	 T. Bouhadiba, M. Moy, and F. Maraninchi, “System-level
modeling of energy in tlm for early validation of power and
thermal management,” in “Proceedings of the Conference on
Design, Automation and Test in Europe,” (EDA Consortium,
San Jose, CA, USA, 2013), DATE ’13, pp. 1609–1614.

[4]	 M. Giammarini, M. Conti, and S. Orcioni, “System-level ener-
gy esti-mation with powersim,” in “Electronics, Circuits and
Systems (ICECS), 2011 18th IEEE International Conference
on,” (2011), pp. 723–726.

[5]	 W.-T. Hsieh, J.-C. Yeh, S.-C. Lin, H.-C. Liu, and Y.-S. Chen,
“System power analysis with dvfs on esl virtual platform,” in
“SOC Conference (SOCC), 2011 IEEE International,” (2011),
pp. 93–98.

[6] M. Kuehnle, A. Wagner, A. V. Brito, and J. Becker, “Modeling
and implementation of a power estimation methodology for
systemc,” Inter-national Journal of Reconfigurable Compu-
ting (2012).

[7]	 F. Klein, G. Araujo, R. Azevedo, R. Leao, and L. dos Santos,
“An efficient framework for high-level power exploration,” in
“Circuits and Systems, 2007. MWSCAS 2007. 50th Midwest
Symposium on,” (2007), pp. 1046–1049.

[8]	 S.-K. Rethinagiri, O. Palomar, O. Unsal, A. Cristal, R. Ben-A-
titallah, and S. Niar, “Pets: Power and energy estimation tool
at system-level,” in “Quality Electronic Design (ISQED), 2014
15th International Sympo-sium on,” (2014), pp. 535–542.

[9]	 C. Trabelsi, R. Ben Atitallah, S. Meftali, J.-L. Dekeyser, and
A. Jemai, “A model-driven approach for hybrid power esti-
mation in embedded systems design,” EURASIP Journal on
Embedded Systems 2011, 569031 (2011).

[10]	 M. Caldari, M. Conti, P. Crippa, G. Nuzzo, S. Orcioni, and C.
Turchetti, “Instruction based power consumption estimation
methodology,” in “Electronics, Circuits and Systems, 2002.
9th International Conference on,” , vol. 2 (2002), vol. 2, pp.
721–724 vol.2.

[11]	 M. Kuehnle, A. Wagner, and J. Becker, “A statistical power
estimation methodology embedded in a systemc code trans-
lator,” in “Proceedings of the 24th Symposium on Integrated
Circuits and Systems Design,” (ACM, New York, NY, USA,
2011), SBCCI ’11, pp. 79–84.

An Approach for Power Estimation at Electronic System Level using Distributed Simulation
Oliveira; Brito; Araujo & Melcher

170 Journal of Integrated Circuits and Systems 2016; v.11 / n.3:159-170

[12]	 G. Mariani, G. Palermo, C. Silvano, and V. Zaccaria, “Multi
-processor system-on-chip design space exploration based
on multi-level modeling techniques,” in “Systems, Architectu-
res, Modeling, and Simulation, 2009. SAMOS ’09. Internatio-
nal Symposium on,” (2009), pp. 118–124.

[13]	 I. Lee, H. Kim, P. Yang, S. Yoo, E.-Y. Chung, K.-M. Choi, J.-T.
Kong, and S.-K. Eo, “Powervip: Soc power estimation fra-
mework at transaction level,” in “Design Automation, 2006.
Asia and South Pacific Conference on,” (2006), pp. 8 pp.–.

[14]	 IEEE, “Ieee standard for modeling and simulation - high level
archi-tecture (hla) - framework and rules,” IEEE Std 1516-
2010 (Revision of IEEE Std 1516-2000) pp. 1–38 (2010).

[15]	 M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low
Power Methodology Manual: For System-on-Chip Design
(Springer Publishing Company, Incorporated, 2007).

[16]	 “Ieee standard for design and verification of low-power inte-
grated cir-cuits,” IEEE Std 1801-2013 (Revision of IEEE Std
1801-2009) pp. 1–348 (2013).

[17]	 G. S. Silveira, A. V. Brito, H. F. de A. Oliveira, and E. U. K.
Melcher, “Open systemc simulator with support for power ga-
ting design,” Int. J. Reconfig. Comput. 2012, 9:9–9:9 (2012).

[18]	 C. Talarico, J. W. Rozenblit, V. Malhotra, and A. Stritter, “A
new frame-work for power estimation of embedded sys-
tems,” Computer 38, 71–78 (2005).

[19]	 N. Bansal, K. Lahiri, A. Raghunathan, and S. T. Chakradhar,
“Power monitors: A framework for system-level power esti-
mation using heterogeneous power models,” in “VLSI De-
sign, 2005. 18th International Conference on,” (IEEE, 2005),
pp. 579–585.

[20]	 Y.-H. Park, S. Pasricha, F. J. Kurdahi, and N. Dutt, “System
level power estimation methodology with h. 264 decoder
prediction ip case study,” in “Computer Design, 2007. ICCD
2007. 25th International Conference on,” (IEEE, 2007), pp.
601–608.

[21]	 W.-T. Hsieh, J.-C. Yeh, and S.-Y. Huang, “Pac duo system
power estimation at esl,” in “Design Automation Conferen-
ce (ASP-DAC), 2010 15th Asia and South Pacific,” (IEEE,
2010), pp. 815–820.

[22].	T.-J. Lin, C.-N. Liu, S.-Y. Tseng, Y.-H. Chu, and A.-Y. Wu,
“Overview of itri pac project-from vliw dsp processor to mul-
ticore computing platform,” in “VLSI Design, Automation and
Test, 2008. VLSI-DAT 2008. IEEE International Symposium
on,” (IEEE, 2008), pp. 188–191.

[23]	 M. Giammarini, M. Conti, and S. Orcioni, “System-level ener-
gy estima-tion with powersim,” in “2011 18th IEEE Interna-
tional Conference on Electronics, Circuits, and Systems,”
(2011).

[24]	 R. Damaševicius,ˇ “Estimation of design characteristics at rtl
modeling level using systemc,” Information Technology And
Control 35 (2006).

[25]	 F. Klein, G. Araujo, R. Azevedo, R. Leao, and L. Santos, “An
Efficient Framework for High-Level Power Exploration,” in
“Proceedings of the 50th Midwest Symposium on Circuits
and Systems - MWSCAS 2007,” (2007), pp. 1046–1049.

[26]	 D. Greaves and M. Yasin, “Tlm power3: Power estimation
methodology for systemc tlm 2.0,” in “Models, Methods, and
Tools for Complex Chip Design,” (Springer, 2014), pp. 53–
68.

[27]	 M. Moy, “Tlm-power tlm-power++ application conclusion mini
power-aware tlm-platform,” (2010).

[28]	 G. B. Vece and M. Conti, “Power estimation in embedded
systems within a systemc-based design context: the pktool
environment,” in “Intelligent solutions in Embedded Systems,
2009 Seventh Workshop on,” (IEEE, 2009), pp. 179–184.

[29]	 “IEEE Standard for Modeling and Simulation (M&S) High Le-
vel Archi-tecture (HLA),” IEEE Std 1516.x-2010 (2010).

[30]	 L. Duenha, M. Guedes, H. Almeida, M. Boy, and R. Azevedo,
“Mp-socbench: A toolset for mpsoc system level evaluation,”
in “Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS XIV), 2014 International Conferen-
ce on,” (IEEE, 2014), pp. 164–171.

[31]	 C. Ptolemaeus, ed., System Design, Modeling, and Simula-
tion using Ptolemy II (Ptolemy.org, 2014).

[32]	 A. V. Brito, A. V. Negreiros, C. Roth, O. Sander, and J. Be-
cker, “Devel-opment and evaluation of distributed simulation
of embedded systems using ptolemy and hla,” in “Proceedin-
gs of the 2013 IEEE/ACM 17th International Symposium on
Distributed Simulation and Real Time Applications,” (IEEE
Computer Society, Washington, DC, USA, 2013), DS-RT ’13,
pp. 189–196.

[33]	 E. Noulard, J.-Y. Rousselot, and P. Siron, “Certi, an open
source rti, why and how,” in “Spring Simulation Interoperabi-
lity Workshop,” (2009), pp. 23–27.

