
Abstract—This paper presents a pioneer VLIW architecture 
of a native Java processor. We show that, thanks to the specif-
ic stack architecture and to the use of the VLIW technique, 
one is able to obtain a meaningful reduction of energy con-
sumption, with small area overhead, when compared to other 
ways of executing Java in hardware. The underlying tech-
nique is based on the reuse of memory access instructions, 
hence reducing power during memory or cache accesses. The 
architecture is validated for some complex embedded applica-
tions like IMDCT computation and other data processing 
benchmarks. Up to 3 times of savings in energy consumption 
is presented, when comparing the pipelined Java architecture 
against a VLIW version of the same processor 
 

Index Terms—VLIW, Java, Embedded Systems, Power 
Consumption 

I. INTRODUCTION 

The embedded system market is expanding. The re-
search and production of specific processors to be used in-
side cellular phones, mp3 players, digital cameras, micro-
waves, videogames, printers and others appliances is fol-
lowing the same growing path [1]. Moreover, the complexi-
ty of these embedded systems, which are offering more and 
more functions to the user, like Internet access, color dis-
play, audio and video reproduction, among others, is in-
creasing as well [2]. These applications require systems 
with enough processing capabilities to handle with their 
tasks. 

In the same way, Java is becoming increasingly popular 
in embedded environments. It is estimated that devices with 
embedded Java such as cellular phones, PDAs and pagers 
will grow from 176 million in 2001 to 721 million in 2005 
[3]. Nevertheless, it is predicted that at least 80 percent of 
mobile phones will support Java by 2006 [4]. As one can 
observe, the presence of Java in embedded systems is be-
coming more significant. This means that current design 
goals might include a careful look on embedded Java pro-
cessors, and their performance versus power tradeoffs must 
be taken into account. 

In this paper we show a pioneer Java VLIW architec-
ture, comparing it with different architectures capable of 
executing Java bytecodes and discussing their area, perfor-
mance and mainly power requirements, focusing on em-
bedded systems applications. We demonstrate that by the 
use of the VLIW technique, one can optimize the execution 
of instructions and obtain a meaningful reduction in the 
energy consumption when the algorithm presents a high 
level of parallelism. Moreover, it is shown that the use of 
the VLIW technique further benefits stack-like architec-
tures and reduces the power consumption, thanks to the re-

duction of memory accesses, one of the major sources of 
power dissipation in embedded processors [5]. Further-
more, the technique here presented can be used in other 
areas, such as Java compilers and virtual machines. De-
pending on the VLIW version employed and the level of 
parallelism available in a given application, up to 4 times in 
performance gains is presented when comparing to the 
simple pipelined processor. In the same way, up to 3 times 
of energy savings is demonstrated.  

This paper is organized as follows: Section 2 shows a 
brief review of the existing Java and VLIW processors. In 
Section 3 we discuss the different architectures of Java ma-
chines that will be evaluated, and present the advantages of 
using the VLIW technique in stack machines. Section 4 
presents the simulation environment: the power simulator 
and the test case algorithms executed in the processors. 
Section 5 shows the results regarding power consumption, 
performance and area. The last Section draws conclusions 
and introduces future work. 

II. RELATED WORK 

A great number of Java processors aimed at the embed-
ded systems market has already been proposed. Sun’s Pico-
java I [6], a four stage pipelined processor, and Picojava II 
[7], with a six stage pipeline, are probably the most studied 
ones. Even though the organization of such processors al-
lows a variable size for the data and instruction caches, and 
the floating point unit is optional, there is no special care on 
the underlying microarchitecture in order to reduce the area 
and power consumption of the system. The same occurs to 
others Java processors, like Komodo [8], a multithreaded 
Java microcontroller concerned especially with real time 
applications.  

All of these and other examples of native Java execution 
machines always focus on obtaining the maximum possible 
performance. However, in the domain of embedded sys-
tems, not only plain throughput is the correct metric. Other 
issues like power dissipation and software compatibility 
play a major role.  

Concerning VLIW machines, [9] proposed a stack pro-
cessor based on the VLIW technique for real time multime-
dia network system and data processing. Sun Microsystems 
proposed in [10] the MAJC architecture, which exploits the 
parallelism in multiple levels: instruction, data, thread and 
process, through vertical and speculative multithreading, 
chip multiprocessing and VLIW. Other VLIW processors 
aimed at DSP were developed, like Viper [11], Fujitsu 
FR500 [12] and Texas TMS320C6x [13]. 

However, none of these examples of VLIW executes di-
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rectly the Java bytecodes. As a consequence, they do not 
explore the advantages of the search of parallelism and ex-
ecution of Java bytecodes in a stack-like architecture using 
the VLIW technique. This way, the research of architec-
tures on low power Java processors, able to maintain 
enough performance to execute the target application with 
the smallest possible power budget, is the goal of this work.   

III. THE JAVA PROCESSORS 

The Femtojava processor [14] is a stack-based micro-
controller that executes Java bytecodes. General characte-
ristics of the processor are: reduced instruction set, Harvard 
architecture and small size. This processor was designed 
specifically for the embedded system market. The first ar-
chitecture evaluated is a multicycle version [14] that takes 
from three to fourteen cycles to execute an instruction.  

The second architecture is the pipelined version [15], 
which has five stages: instruction fetch, instruction decod-
ing, operand fetch, execution, and write back, as shown in 
Figure 1. One of the main characteristics of this architec-
ture is the presence of registers playing the role of operand 
stack and local variable pool (used to keep values of the 
local variables of a method). We call this architecture of 
Low-Power, for reasons to become clear next. 

 
 

 
 
 

Fig. 1. Pipelined Femtojava Processor [15] 
 

The first stage, instruction fetch, is composed by an in-
struction queue of 9 registers. The first instruction in the 
queue is sent to the instruction decoder stage. The decoder 
has four functions: to generate the control word for that in-
struction, to handle data dependencies, to analyze the for-
warding possibilities and to inform to the instruction queue 
the size of the current instruction, in order to allocate the 
next instruction of the stream in the first place of the queue. 
This is necessary because of the use of variable length in-
structions: they can have one or two immediate operands, 
or none at all.  

Operands fetch is done in a variable size register bank, 
defined a priori in earlier stages of the design.  The operand 
stack and the local variable pool of the methods are availa-
ble in the register bank. There are two registers: SP and 
VARS, which point to the top of the stack and to beginning 
of the local variable storage, respectively. Depending on 
the instruction, one of them is used as base for the operand 
fetch. Once the operands are fetched, they are sent to the 
fourth stage, where the operation is executed. There is no 
branch prediction, in order to save area. All branches are 
supposed to be not taken. If the branch is taken, a penalty 
of three cycles must be paid. 

The write back stage saves, if necessary, the result of the 
execution stage back to the register bank, again, using the 
SP or VARS as base. There is a unified register bank for 

the stack and local variable pool, because this facilitates the 
call and return of methods, taking advantage of the JVM 
specification, where each method is located by a frame 
pointer in the stack.  

The Low-Power Java processor uses the forwarding 
technique [16], which brings an advantage when comparing 
to Load-Store based processors: in instructions that mani-
pulate the stack, the operands forwarded to earlier stages 
will not be used anymore. As a consequence, there is no 
need to write back these operands to the stack. The result is 
the reduction on the power consumption, because the num-
ber of writes in the stack is reduced. In [15] we show a gain 
factor of 8 concerning energy consumption with a minimal 
area overhead, thanks to the use of the forwarding tech-
nique. 

The VLIW processor is an extension of the pipelined 
one. Basically, it has its functional units and the instruction 
decoders replicated. The additional decoders do not support 
the instructions for call and return of methods, since they 
are always in the main flow. The local variable storage is 
placed just in the first register file. When the instructions of 
other flows (instructions located in any slot but the first one 
in the VLIW packet, which are executed in parallel) need 
the value of a local variable, they must fetch it from the 
register bank in the main flow. Each instruction flow of the 
VLIW packet has its own operand stack, which has less 
registers than the main stack, since the stacks for the sec-
ondary flows do not grow as much as the one in the main 
flow does. 

The VLIW packet has a variable size, avoiding unneces-
sary memory accesses. A header in the first instruction of 
the word informs to the instruction fetch controller how 
many instructions the current packet has. The search for 
ILP in the Java program is done at the bytecode level. The 
algorithm works as follows: all the instructions that depend 
on the result of the previous one are grouped in an operand 
block. The entire Java program is divided in these groups 
and they can be parallelized respecting the functional unit 
constraints. For example, if there is just one multiplier, two 
instructions that use this functional unit cannot be operated 
in parallel. An example of this procedure can be observed 
in Figure 2. 

 
 
 
 
 
 
 
 

Fig. 2. Building the VLIW packets 
In the sequence of instructions, observed in Figure 2a, 

the first imul instruction will consume the operands pushed 
previously, by the instructions bipush 10 and bipush 5. Af-
ter that, the ishl instruction will consume two more ope-
rands produced before by the previous bipush. The iadd 
instruction will consume the results of imul and ishl. Final-
ly, the istore will save the result of the iadd in the local va-
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riable pool. After that, there are two more bipush instruc-
tions, which operands will be used by the last imul. How-
ever, they do not use any result of the set of instruction 
previously executed. In other words, their operand stacks 
are independent. Hence, their operation can occur in paral-
lel, as can be observed in Figure 2b. It is important to no-
tice that the two imul instructions ca not stay at the same 
VLIW packet, since we are considering that in this example 
the VLIW processor has just one multiplier. 

One of the main advantages of a stack processor is the 
manner of how the operand blocks communicate with each 
other. In conventional VLIW architectures, usually some 
kind of communication system among the functional units 
of the many flows is necessary. There are many possibili-
ties: the use of crossbars, buses or a shared register bank. In 
the case of the latter, additional instructions are necessary 
to synchronize the communication of the flows in the regis-
ter bank to maintain the data consistency.  

In the Java language, when an operation block gets to 
the end, its result is saved in the local variable pool. This 
variable pool is shared among all the flows in a register 
bank. When an operand block in a determined flow needs a 
result of another operand block that is in another flow, it is 
only necessary to access the register bank of the main flow, 
where the local variable pool is located. No extra instruc-
tions are necessary or synchronizations mechanisms, be-
cause this communication is intrinsically found in a stack 
machine based language, such as Java. 

The code sequence in Figure 3 illustrates this procedure. 
One can note that, after the parallelization, the third opera-
tion block in the first flow needs a result from the second 
operation block, which is in the second VLIW flow. As the 
result was written in the register bank (through the instruc-
tion istore_1), the third operation block reads this result us-
ing the iload_1 instruction in the local variable pool that is 
shared in a register bank among all the flows. 

 
 
 
 
 
 
 
 
 

Fig. 3. Sharing data among different flows 
It is important to notice that is really easy to build a pro-

gram to analyze the parallelism in Java bytecodes. There is 
no special care to handle the communication among the 
flows and, to build the operands blocks, it is just necessary 
the information of how much each instruction consumes or 
produces operands to or from the stack. 

As mentioned before, one of the major sources of energy 
consumption are the memory accesses. Hence, another op-
timization at the bytecode level is made concerning this 
problem. After the search for parallelism, another search is 
done: instructions that read the main memory (i.e. getstatic) 
are aligned in the same VLIW packet. If they fetch a value 
at the same address in the memory and between them this 
value is not changed (i.e., there is no putstatic), one can 

align these getstatic instructions. Hence, the processor, in-
stead of make all the getstatic accesses, just need to per-
form one operation, passing the value to the other flows. 
Figure 4 illustrates this procedure. 

 
 

 
 
 
 
 
 
 

Fig. 4. Memory accesses – alignment process 
IV. SIMULATION ENVIRONMENT 

The tool utilized is a configurable compiled-code cycle-
accurate simulator [17]. It was used to provide data on the 
energy consumption, memory usage and performance. Its 
power estimation technique is comparable to the compo-
nent-based approach used in [18]. 

Power dissipation is evaluated in terms of switching ac-
tivity, and as the processor has separated instruction and 
data memories, we also included an evaluation module 
concerning RAM and ROM memories, besides the register 
bank. This way, one can verify the relative power dissipa-
tion of the CPU, instruction memory, and data memory. It 
is important to measure the impact of each one of these 
blocks, so that one can better explore the design space.  

Five different types of algorithms were implemented and 
simulated over the architectures described in Section 3. Sin 
computation, as a representative of arithmetic libraries; sort 
and search, used in schedulers; IMDCT (Inverse Modified 
Discrete Cosine Transformation), an important part of the 
MP3 decompression algorithm; and a library to emulate 
sums of floating point numbers, since our Java processors 
can be configured without a floating point unit in order to 
save area.  

There are two search algorithms: one executes the search 
in a sequential fashion and the other performs a binary 
search in the same vector. The sort algorithms arrange a set 
of ten numbers putting them in increasing order. Three dif-
ferent kinds of sort are performed: bubble sort, insert sort 
and select sort. The floating point sum algorithm makes 20 
sums of two floating point numbers and puts its results in a 
vector in the memory. Finally, the sin algorithm uses the 
cordic method to calculate the result. Additionally, three 
loop unrolled versions of the IMDCT algorithm were im-
plemented, to make the search for ILP in the java program 
easier.  

V. RESULTS 

Our experiments are supported by simulation, where dif-
ferent versions of a Java Processor execute algorithms used 
in embedded system domain. The area taken by the proces-
sors was computed in number of FPGA’s logic cells, after 
synthesis of the VHDL versions of these processors.  

Table 1 shows the area occupied by the three different 
versions of our Java processors. It is important to note that 
the register bank in the Low-Power version (as the main 
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flow of the VLIW one), used as stack and local variable 
pool, has 32 registers, the maximum required among all the 
applications (note that they are counted in the table, even 
though the FPGA’s memory could be used for this pur-
pose). The area was evaluated using the Leonardo Spec-
trum for Windows [19], and it is presented in logic cells. 

Table 1. Area occupied by the VHDL version of the architectures 

 
 
 
 
 
Table 2 shows the performance in number of cycles of 

the processors for each application. As can be observed in 
this table, better results are found when unrolled versions 
are used (IMDCT u1, IMDCT u2 and IMDCT u3). One 
reason for this is that there are less conditional branches in 
these versions. Therefore, the number of cycles lost be-
cause of braches miss predictions is reduced as well (in the 
case of our Java Processor, 3 cycles for each branch miss 
prediction). For the VLIW version, another advantage in 
the use of unrolled versions is that the parallelism is more 
exposed in the bytecodes for the analyzer, since the size of 
basic blocks increases significantly. The drawback when 
using this technique is the increase in the memory footprint. 

Table 2. Performance of the architectures, in number of cycles 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Operating at the same frequency, the VLIW versions are 

the ones that have the major power consumption per cycle 
in the core, because their architectures are more complex, 
with more functional units and registers available. This be-
havior can be observed in Figure 5 (where VLIW 2 means 
two instructions per VLIW packet and so on). It is impor-
tant to note that VLIW processors with more instructions 
per packet consume even more power, since there are more 
sequential components that spent energy even if they are 
not used. 

However, as can be observed in Figure 6, when consi-
dering the total energy consumption instead of the power 
consumption per cycle, the difference among versions is 
small for the majority of the benchmark set. The reason for 
that is the high IPC average achieved by the VLIW proces-
sors: even though they spend more power per cycle, they 

need fewer cycles to finish the execution of a given bench-
mark. 

The multicycle version uses the main memory for the 
operand stack and local variable storage. There is a good 
difference in terms of energy consumption between this ar-
chitecture and the Low-Power version. This version, in 
turn, just make accesses in the main memory in method 
calls and returns or in specific instructions, like getstatic 
and putstatic. Figure 7 demonstrates the advantage of im-
plementing the operand stack and local variable storage in a 
register bank instead of using the main memory for this 
purpose. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 5. Power consumed per cycle in the core 

 
 
 
 
 
 
 
 
 
 

 

 
 

 
Fig. 6. Total of energy spent in the core per each application 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Total of energy spent in memory accesses 

 

PROCESSOR MULTICYCLE PIPELINE VLIW 
(# instructions per word) 

2 4 8 
Area (LCs) 1365 3749 6110 10505 19297 

Algorithm 

Number of cycles 

Multicycle Low-Power 
VLIW 

2 4 8 

Sin 2447 755 599 592 583 

Ord./Bubble 6950 2424 2104 1967 1967 

Ord./Select 5335 1930 1707 1670 1670 

Ord./Insert 5111 1934 1601 1331 1331 

Binary Search 1162 403 368 365 365 

Sequencial Search 7586 1997 1775 1775 1775 

IMDCT 140300 40306 33050 32994 32994 

IMDCT u1 97354 31500 19325 12313 9944 

IMDCT u2 92882 30369 18689 11737 9432 

IMDCT u3 51345 18858 12789 8929 7741 

Floating Point Sums 30747 14531 12474 12313 12313 
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In Figure 8, we show the gains when using the VLIW 
technique with and without getstatic alignment, as ex-
plained in Section 3. As one can observe, there is an ex-
pressive reduction in some algorithms, mainly in the 
IMDCT filter. It is important to notice that there is a small 
loss in the parallelism when this technique is used, because 
some instructions are moved in order to align the getstatic 
instructions in the same VLIW packet. This loss is in aver-
age of 1,5%, considering our benchmark set. 

In Figure 9 we show the total energy consumption, con-
sidering the core, RAM and ROM of all architectures ana-
lyzed. The difference of consumption between the multi-
cycle version and the pipelined one has mainly three rea-
sons: the use of the register bank in the core avoiding ac-
cesses in the main memory, the reduced number of stack 
writes due to the use of the forwarding technique and the 
better IPC average.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Power savings in memory accesses alignments 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. The total energy consumption of each algorithm in the different 
versions of the processors 

The gain in the VLIW version is basically because of the 
use of smaller register banks in the operand stacks of the 
secondary VLIW flows, avoiding, for some instructions, 
the use of the one in the main flow, which has more regis-
ters; the decrease in number of memory accesses due to the 
getstatic alignment; and finally the even better IPC average. 
However, these advantages in terms of power consumption 
can be observed only when these secondary flows are in-
tensively utilized, which is exactly the case of the unrolled 
versions of the IMDCT.  

In embedded applications, many of them with real time 
requirements, a specific throughput must be warranted for 
the application. Assuming that this task has already been 
accomplished by the multicycle version, the frequency of 
operation can be reduced in the Low-Power and VLIW ver-
sions with the purpose of saving more power, since these 
architectures can execute more instructions per cycle, as 
was shown in table 2.  Moreover, when assuming that the 
dynamic power is the dominant in the total power con-
sumed by the system, and that all the gates of the micropro-
cessor form a collective switching capacitance C with a 
common switching frequency f, one obtains: 

 
 
As can be observed in [20], the voltage of the processor 

Transmeta TM5400 (known as Crusoe) [21], designed for 
embedded systems, can be decreased by a factor of 4,6% 
when the operation frequency is reduced by 10%. Figure 10 
shows the relative decrease in the energy consumption 
when the frequency, and consequently, the voltage, of the 
Low-Power and VLIW versions are reduced to reach exact-
ly the same throughput of the multicycle version, using as 
base the Equation (1).  

It is very important to mention that the IMDCT versions 
with loop unrolled are those that show more benefits, bring-
ing a high rate of instruction executed per cycle. Using the 
loop unrolled technique a high level of parallelism is ex-
posed for the analyzer. Therefore, the frequency and vol-
tage can be reduced even more when compared to others 
algorithms. As can be observed in Figure 10, the IMDCT 
u2 demonstrates good savings in terms of energy consump-
tion, in the VLIW 4. When there is a high level of paral-
lelism, the secondary flows are massively used, so the reg-
isters of these flows can be always occupied by instruc-
tions. However, there is a limit. The execution of floating 
point sums algorithms, for instance, allows up to 4 instruc-
tions per VLIW packet. Beyond that, as there is no more 
parallelism available in the application, all the extra se-
quential components of the secondary flows keeping spend-
ing power without any purpose. In the search and sort algo-
rithms, always there is a disadvantage in terms of energy 
consumption, because of the lack of parallelism available. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. The total energy consumed by the Low-power and VLIW ver-

sions considering that they have the same performance 

(1)
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The memory accesses are responsible for approximately 
20% of the overall energy spent by the whole system. 
However, depending on the structure, size and level of the 
memory, it can be responsible for 50% of the energy con-
sumption or even more [22][23]. In Figure 11 we show the 
difference in energy consumption when applying the gets-
tatic alignment technique on the VLIW 4 processor (aver-
age of the three unrolled versions of IMDCT), considering 
different proportions of energy spend by memory accesses 
(X-axis). As one can observe, when the memory accesses is 
responsible for 50% of the energy consumption of the 
whole system, when using the getstatic alignment one can 
save almost 15% of the overall consumption of the system. 
This approach has almost no cost in hardware and perfor-
mance, and it is a particular characteristic of stack-like pro-
cessors. 

 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 11. Advantages of the getstatic alignment in the overall energy 
consumption 

In none of the studied examples we found an algorithm 
that spends less energy in the VLIW 8. However, we have 
not used more sophisticated techniques, like software pipe-
lining and superblock, to better expose the parallelism of 
the applications. For loop intensive programs, software pi-
pelining provides performance gains ranging from 50% to 
300% and superblock from 10% to 25% [24]. Even though 
none of those techniques was used, a gain of 3 times in 
energy consumption was shown in the VLIW 4, compared 
to the low-power version  (considering the unrolled ver-
sions of IMDCT), demonstrating the potential of this Java 
VLIW architecture. 

VI. CONCLUSIONS AND FUTURE WORK 

We demonstrated that in algorithms that present a high 
level of parallelism, one could obtain a meaningful de-
crease in the energy consumption, taking advantage of the 
VLIW technique in stack-like processors. Besides the op-
portunity of using the memory accesses alignment, the 
search for the parallelism and the communication among 
flows are facilitated, because of the stack-like architecture 
which Java is based. For future work, more algorithms con-
cerning the embedded system domain and optimizations 
aimed at the VLIW architecture will be evaluated. Other 
alternatives to increase the VLIW performance, such as the 
use of other techniques to find the instruction parallelism 
inside the program, like software pipelining, superblocks, 
and static speculative execution, will be studied, bringing 
even better results. 
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