
Abstract—This paper presents a pioneer VLIW architecture
of a native Java processor. We show that, thanks to the specif-
ic stack architecture and to the use of the VLIW technique,
one is able to obtain a meaningful reduction of energy con-
sumption, with small area overhead, when compared to other
ways of executing Java in hardware. The underlying tech-
nique is based on the reuse of memory access instructions,
hence reducing power during memory or cache accesses. The
architecture is validated for some complex embedded applica-
tions like IMDCT computation and other data processing
benchmarks. Up to 3 times of savings in energy consumption
is presented, when comparing the pipelined Java architecture
against a VLIW version of the same processor

Index Terms—VLIW, Java, Embedded Systems, Power
Consumption

I. INTRODUCTION

The embedded system market is expanding. The re-
search and production of specific processors to be used in-
side cellular phones, mp3 players, digital cameras, micro-
waves, videogames, printers and others appliances is fol-
lowing the same growing path [1]. Moreover, the complexi-
ty of these embedded systems, which are offering more and
more functions to the user, like Internet access, color dis-
play, audio and video reproduction, among others, is in-
creasing as well [2]. These applications require systems
with enough processing capabilities to handle with their
tasks.

In the same way, Java is becoming increasingly popular
in embedded environments. It is estimated that devices with
embedded Java such as cellular phones, PDAs and pagers
will grow from 176 million in 2001 to 721 million in 2005
[3]. Nevertheless, it is predicted that at least 80 percent of
mobile phones will support Java by 2006 [4]. As one can
observe, the presence of Java in embedded systems is be-
coming more significant. This means that current design
goals might include a careful look on embedded Java pro-
cessors, and their performance versus power tradeoffs must
be taken into account.

In this paper we show a pioneer Java VLIW architec-
ture, comparing it with different architectures capable of
executing Java bytecodes and discussing their area, perfor-
mance and mainly power requirements, focusing on em-
bedded systems applications. We demonstrate that by the
use of the VLIW technique, one can optimize the execution
of instructions and obtain a meaningful reduction in the
energy consumption when the algorithm presents a high
level of parallelism. Moreover, it is shown that the use of
the VLIW technique further benefits stack-like architec-
tures and reduces the power consumption, thanks to the re-

duction of memory accesses, one of the major sources of
power dissipation in embedded processors [5]. Further-
more, the technique here presented can be used in other
areas, such as Java compilers and virtual machines. De-
pending on the VLIW version employed and the level of
parallelism available in a given application, up to 4 times in
performance gains is presented when comparing to the
simple pipelined processor. In the same way, up to 3 times
of energy savings is demonstrated.

This paper is organized as follows: Section 2 shows a
brief review of the existing Java and VLIW processors. In
Section 3 we discuss the different architectures of Java ma-
chines that will be evaluated, and present the advantages of
using the VLIW technique in stack machines. Section 4
presents the simulation environment: the power simulator
and the test case algorithms executed in the processors.
Section 5 shows the results regarding power consumption,
performance and area. The last Section draws conclusions
and introduces future work.

II. RELATED WORK

A great number of Java processors aimed at the embed-
ded systems market has already been proposed. Sun’s Pico-
java I [6], a four stage pipelined processor, and Picojava II
[7], with a six stage pipeline, are probably the most studied
ones. Even though the organization of such processors al-
lows a variable size for the data and instruction caches, and
the floating point unit is optional, there is no special care on
the underlying microarchitecture in order to reduce the area
and power consumption of the system. The same occurs to
others Java processors, like Komodo [8], a multithreaded
Java microcontroller concerned especially with real time
applications.

All of these and other examples of native Java execution
machines always focus on obtaining the maximum possible
performance. However, in the domain of embedded sys-
tems, not only plain throughput is the correct metric. Other
issues like power dissipation and software compatibility
play a major role.

Concerning VLIW machines, [9] proposed a stack pro-
cessor based on the VLIW technique for real time multime-
dia network system and data processing. Sun Microsystems
proposed in [10] the MAJC architecture, which exploits the
parallelism in multiple levels: instruction, data, thread and
process, through vertical and speculative multithreading,
chip multiprocessing and VLIW. Other VLIW processors
aimed at DSP were developed, like Viper [11], Fujitsu
FR500 [12] and Texas TMS320C6x [13].

However, none of these examples of VLIW executes di-

A. C. S. Beck and L. Carro

Universidade Federal do Rio Grande do Sul
Instituto de Informática – Av. Bento Gonçalves, 9500 – Porto Alegre/RS – Brazil

e-mail: caco,carro@inf.ufrgs.br

 A VLIW Low Power Java Processor for Embedded Applications

JOURNAL INTEGRATED CIRCUITS AND SYSTEMS, VOL 1, NO. 4, DECEMBER 2006. 37

rectly the Java bytecodes. As a consequence, they do not
explore the advantages of the search of parallelism and ex-
ecution of Java bytecodes in a stack-like architecture using
the VLIW technique. This way, the research of architec-
tures on low power Java processors, able to maintain
enough performance to execute the target application with
the smallest possible power budget, is the goal of this work.

III. THE JAVA PROCESSORS

The Femtojava processor [14] is a stack-based micro-
controller that executes Java bytecodes. General characte-
ristics of the processor are: reduced instruction set, Harvard
architecture and small size. This processor was designed
specifically for the embedded system market. The first ar-
chitecture evaluated is a multicycle version [14] that takes
from three to fourteen cycles to execute an instruction.

The second architecture is the pipelined version [15],
which has five stages: instruction fetch, instruction decod-
ing, operand fetch, execution, and write back, as shown in
Figure 1. One of the main characteristics of this architec-
ture is the presence of registers playing the role of operand
stack and local variable pool (used to keep values of the
local variables of a method). We call this architecture of
Low-Power, for reasons to become clear next.

Fig. 1. Pipelined Femtojava Processor [15]

The first stage, instruction fetch, is composed by an in-
struction queue of 9 registers. The first instruction in the
queue is sent to the instruction decoder stage. The decoder
has four functions: to generate the control word for that in-
struction, to handle data dependencies, to analyze the for-
warding possibilities and to inform to the instruction queue
the size of the current instruction, in order to allocate the
next instruction of the stream in the first place of the queue.
This is necessary because of the use of variable length in-
structions: they can have one or two immediate operands,
or none at all.

Operands fetch is done in a variable size register bank,
defined a priori in earlier stages of the design. The operand
stack and the local variable pool of the methods are availa-
ble in the register bank. There are two registers: SP and
VARS, which point to the top of the stack and to beginning
of the local variable storage, respectively. Depending on
the instruction, one of them is used as base for the operand
fetch. Once the operands are fetched, they are sent to the
fourth stage, where the operation is executed. There is no
branch prediction, in order to save area. All branches are
supposed to be not taken. If the branch is taken, a penalty
of three cycles must be paid.

The write back stage saves, if necessary, the result of the
execution stage back to the register bank, again, using the
SP or VARS as base. There is a unified register bank for

the stack and local variable pool, because this facilitates the
call and return of methods, taking advantage of the JVM
specification, where each method is located by a frame
pointer in the stack.

The Low-Power Java processor uses the forwarding
technique [16], which brings an advantage when comparing
to Load-Store based processors: in instructions that mani-
pulate the stack, the operands forwarded to earlier stages
will not be used anymore. As a consequence, there is no
need to write back these operands to the stack. The result is
the reduction on the power consumption, because the num-
ber of writes in the stack is reduced. In [15] we show a gain
factor of 8 concerning energy consumption with a minimal
area overhead, thanks to the use of the forwarding tech-
nique.

The VLIW processor is an extension of the pipelined
one. Basically, it has its functional units and the instruction
decoders replicated. The additional decoders do not support
the instructions for call and return of methods, since they
are always in the main flow. The local variable storage is
placed just in the first register file. When the instructions of
other flows (instructions located in any slot but the first one
in the VLIW packet, which are executed in parallel) need
the value of a local variable, they must fetch it from the
register bank in the main flow. Each instruction flow of the
VLIW packet has its own operand stack, which has less
registers than the main stack, since the stacks for the sec-
ondary flows do not grow as much as the one in the main
flow does.

The VLIW packet has a variable size, avoiding unneces-
sary memory accesses. A header in the first instruction of
the word informs to the instruction fetch controller how
many instructions the current packet has. The search for
ILP in the Java program is done at the bytecode level. The
algorithm works as follows: all the instructions that depend
on the result of the previous one are grouped in an operand
block. The entire Java program is divided in these groups
and they can be parallelized respecting the functional unit
constraints. For example, if there is just one multiplier, two
instructions that use this functional unit cannot be operated
in parallel. An example of this procedure can be observed
in Figure 2.

Fig. 2. Building the VLIW packets
In the sequence of instructions, observed in Figure 2a,

the first imul instruction will consume the operands pushed
previously, by the instructions bipush 10 and bipush 5. Af-
ter that, the ishl instruction will consume two more ope-
rands produced before by the previous bipush. The iadd
instruction will consume the results of imul and ishl. Final-
ly, the istore will save the result of the iadd in the local va-

IF ID OF EX WB

00110...

(a) (b)

38 BECK et al.: A VLIW LOW POWER JAVA PROCESSOR FOR EMBEDDED APPLICATIONS

riable pool. After that, there are two more bipush instruc-
tions, which operands will be used by the last imul. How-
ever, they do not use any result of the set of instruction
previously executed. In other words, their operand stacks
are independent. Hence, their operation can occur in paral-
lel, as can be observed in Figure 2b. It is important to no-
tice that the two imul instructions ca not stay at the same
VLIW packet, since we are considering that in this example
the VLIW processor has just one multiplier.

One of the main advantages of a stack processor is the
manner of how the operand blocks communicate with each
other. In conventional VLIW architectures, usually some
kind of communication system among the functional units
of the many flows is necessary. There are many possibili-
ties: the use of crossbars, buses or a shared register bank. In
the case of the latter, additional instructions are necessary
to synchronize the communication of the flows in the regis-
ter bank to maintain the data consistency.

In the Java language, when an operation block gets to
the end, its result is saved in the local variable pool. This
variable pool is shared among all the flows in a register
bank. When an operand block in a determined flow needs a
result of another operand block that is in another flow, it is
only necessary to access the register bank of the main flow,
where the local variable pool is located. No extra instruc-
tions are necessary or synchronizations mechanisms, be-
cause this communication is intrinsically found in a stack
machine based language, such as Java.

The code sequence in Figure 3 illustrates this procedure.
One can note that, after the parallelization, the third opera-
tion block in the first flow needs a result from the second
operation block, which is in the second VLIW flow. As the
result was written in the register bank (through the instruc-
tion istore_1), the third operation block reads this result us-
ing the iload_1 instruction in the local variable pool that is
shared in a register bank among all the flows.

Fig. 3. Sharing data among different flows
It is important to notice that is really easy to build a pro-

gram to analyze the parallelism in Java bytecodes. There is
no special care to handle the communication among the
flows and, to build the operands blocks, it is just necessary
the information of how much each instruction consumes or
produces operands to or from the stack.

As mentioned before, one of the major sources of energy
consumption are the memory accesses. Hence, another op-
timization at the bytecode level is made concerning this
problem. After the search for parallelism, another search is
done: instructions that read the main memory (i.e. getstatic)
are aligned in the same VLIW packet. If they fetch a value
at the same address in the memory and between them this
value is not changed (i.e., there is no putstatic), one can

align these getstatic instructions. Hence, the processor, in-
stead of make all the getstatic accesses, just need to per-
form one operation, passing the value to the other flows.
Figure 4 illustrates this procedure.

Fig. 4. Memory accesses – alignment process
IV. SIMULATION ENVIRONMENT

The tool utilized is a configurable compiled-code cycle-
accurate simulator [17]. It was used to provide data on the
energy consumption, memory usage and performance. Its
power estimation technique is comparable to the compo-
nent-based approach used in [18].

Power dissipation is evaluated in terms of switching ac-
tivity, and as the processor has separated instruction and
data memories, we also included an evaluation module
concerning RAM and ROM memories, besides the register
bank. This way, one can verify the relative power dissipa-
tion of the CPU, instruction memory, and data memory. It
is important to measure the impact of each one of these
blocks, so that one can better explore the design space.

Five different types of algorithms were implemented and
simulated over the architectures described in Section 3. Sin
computation, as a representative of arithmetic libraries; sort
and search, used in schedulers; IMDCT (Inverse Modified
Discrete Cosine Transformation), an important part of the
MP3 decompression algorithm; and a library to emulate
sums of floating point numbers, since our Java processors
can be configured without a floating point unit in order to
save area.

There are two search algorithms: one executes the search
in a sequential fashion and the other performs a binary
search in the same vector. The sort algorithms arrange a set
of ten numbers putting them in increasing order. Three dif-
ferent kinds of sort are performed: bubble sort, insert sort
and select sort. The floating point sum algorithm makes 20
sums of two floating point numbers and puts its results in a
vector in the memory. Finally, the sin algorithm uses the
cordic method to calculate the result. Additionally, three
loop unrolled versions of the IMDCT algorithm were im-
plemented, to make the search for ILP in the java program
easier.

V. RESULTS

Our experiments are supported by simulation, where dif-
ferent versions of a Java Processor execute algorithms used
in embedded system domain. The area taken by the proces-
sors was computed in number of FPGA’s logic cells, after
synthesis of the VHDL versions of these processors.

Table 1 shows the area occupied by the three different
versions of our Java processors. It is important to note that
the register bank in the Low-Power version (as the main

JOURNAL INTEGRATED CIRCUITS AND SYSTEMS, VOL 1, NO. 4, DECEMBER 2006. 39

flow of the VLIW one), used as stack and local variable
pool, has 32 registers, the maximum required among all the
applications (note that they are counted in the table, even
though the FPGA’s memory could be used for this pur-
pose). The area was evaluated using the Leonardo Spec-
trum for Windows [19], and it is presented in logic cells.

Table 1. Area occupied by the VHDL version of the architectures

Table 2 shows the performance in number of cycles of

the processors for each application. As can be observed in
this table, better results are found when unrolled versions
are used (IMDCT u1, IMDCT u2 and IMDCT u3). One
reason for this is that there are less conditional branches in
these versions. Therefore, the number of cycles lost be-
cause of braches miss predictions is reduced as well (in the
case of our Java Processor, 3 cycles for each branch miss
prediction). For the VLIW version, another advantage in
the use of unrolled versions is that the parallelism is more
exposed in the bytecodes for the analyzer, since the size of
basic blocks increases significantly. The drawback when
using this technique is the increase in the memory footprint.

Table 2. Performance of the architectures, in number of cycles

Operating at the same frequency, the VLIW versions are

the ones that have the major power consumption per cycle
in the core, because their architectures are more complex,
with more functional units and registers available. This be-
havior can be observed in Figure 5 (where VLIW 2 means
two instructions per VLIW packet and so on). It is impor-
tant to note that VLIW processors with more instructions
per packet consume even more power, since there are more
sequential components that spent energy even if they are
not used.

However, as can be observed in Figure 6, when consi-
dering the total energy consumption instead of the power
consumption per cycle, the difference among versions is
small for the majority of the benchmark set. The reason for
that is the high IPC average achieved by the VLIW proces-
sors: even though they spend more power per cycle, they

need fewer cycles to finish the execution of a given bench-
mark.

The multicycle version uses the main memory for the
operand stack and local variable storage. There is a good
difference in terms of energy consumption between this ar-
chitecture and the Low-Power version. This version, in
turn, just make accesses in the main memory in method
calls and returns or in specific instructions, like getstatic
and putstatic. Figure 7 demonstrates the advantage of im-
plementing the operand stack and local variable storage in a
register bank instead of using the main memory for this
purpose.

Fig. 5. Power consumed per cycle in the core

Fig. 6. Total of energy spent in the core per each application

Fig. 7. Total of energy spent in memory accesses

PROCESSOR MULTICYCLE PIPELINE VLIW
(# instructions per word)

2 4 8
Area (LCs) 1365 3749 6110 10505 19297

Algorithm

Number of cycles

Multicycle Low-Power
VLIW

2 4 8

Sin 2447 755 599 592 583

Ord./Bubble 6950 2424 2104 1967 1967

Ord./Select 5335 1930 1707 1670 1670

Ord./Insert 5111 1934 1601 1331 1331

Binary Search 1162 403 368 365 365

Sequencial Search 7586 1997 1775 1775 1775

IMDCT 140300 40306 33050 32994 32994

IMDCT u1 97354 31500 19325 12313 9944

IMDCT u2 92882 30369 18689 11737 9432

IMDCT u3 51345 18858 12789 8929 7741

Floating Point Sums 30747 14531 12474 12313 12313

40 BECK et al.: A VLIW LOW POWER JAVA PROCESSOR FOR EMBEDDED APPLICATIONS

In Figure 8, we show the gains when using the VLIW
technique with and without getstatic alignment, as ex-
plained in Section 3. As one can observe, there is an ex-
pressive reduction in some algorithms, mainly in the
IMDCT filter. It is important to notice that there is a small
loss in the parallelism when this technique is used, because
some instructions are moved in order to align the getstatic
instructions in the same VLIW packet. This loss is in aver-
age of 1,5%, considering our benchmark set.

In Figure 9 we show the total energy consumption, con-
sidering the core, RAM and ROM of all architectures ana-
lyzed. The difference of consumption between the multi-
cycle version and the pipelined one has mainly three rea-
sons: the use of the register bank in the core avoiding ac-
cesses in the main memory, the reduced number of stack
writes due to the use of the forwarding technique and the
better IPC average.

Fig. 8. Power savings in memory accesses alignments

Fig. 9. The total energy consumption of each algorithm in the different
versions of the processors

The gain in the VLIW version is basically because of the
use of smaller register banks in the operand stacks of the
secondary VLIW flows, avoiding, for some instructions,
the use of the one in the main flow, which has more regis-
ters; the decrease in number of memory accesses due to the
getstatic alignment; and finally the even better IPC average.
However, these advantages in terms of power consumption
can be observed only when these secondary flows are in-
tensively utilized, which is exactly the case of the unrolled
versions of the IMDCT.

In embedded applications, many of them with real time
requirements, a specific throughput must be warranted for
the application. Assuming that this task has already been
accomplished by the multicycle version, the frequency of
operation can be reduced in the Low-Power and VLIW ver-
sions with the purpose of saving more power, since these
architectures can execute more instructions per cycle, as
was shown in table 2. Moreover, when assuming that the
dynamic power is the dominant in the total power con-
sumed by the system, and that all the gates of the micropro-
cessor form a collective switching capacitance C with a
common switching frequency f, one obtains:

As can be observed in [20], the voltage of the processor

Transmeta TM5400 (known as Crusoe) [21], designed for
embedded systems, can be decreased by a factor of 4,6%
when the operation frequency is reduced by 10%. Figure 10
shows the relative decrease in the energy consumption
when the frequency, and consequently, the voltage, of the
Low-Power and VLIW versions are reduced to reach exact-
ly the same throughput of the multicycle version, using as
base the Equation (1).

It is very important to mention that the IMDCT versions
with loop unrolled are those that show more benefits, bring-
ing a high rate of instruction executed per cycle. Using the
loop unrolled technique a high level of parallelism is ex-
posed for the analyzer. Therefore, the frequency and vol-
tage can be reduced even more when compared to others
algorithms. As can be observed in Figure 10, the IMDCT
u2 demonstrates good savings in terms of energy consump-
tion, in the VLIW 4. When there is a high level of paral-
lelism, the secondary flows are massively used, so the reg-
isters of these flows can be always occupied by instruc-
tions. However, there is a limit. The execution of floating
point sums algorithms, for instance, allows up to 4 instruc-
tions per VLIW packet. Beyond that, as there is no more
parallelism available in the application, all the extra se-
quential components of the secondary flows keeping spend-
ing power without any purpose. In the search and sort algo-
rithms, always there is a disadvantage in terms of energy
consumption, because of the lack of parallelism available.

Fig. 10. The total energy consumed by the Low-power and VLIW ver-

sions considering that they have the same performance

(1)

JOURNAL INTEGRATED CIRCUITS AND SYSTEMS, VOL 1, NO. 4, DECEMBER 2006. 41

The memory accesses are responsible for approximately
20% of the overall energy spent by the whole system.
However, depending on the structure, size and level of the
memory, it can be responsible for 50% of the energy con-
sumption or even more [22][23]. In Figure 11 we show the
difference in energy consumption when applying the gets-
tatic alignment technique on the VLIW 4 processor (aver-
age of the three unrolled versions of IMDCT), considering
different proportions of energy spend by memory accesses
(X-axis). As one can observe, when the memory accesses is
responsible for 50% of the energy consumption of the
whole system, when using the getstatic alignment one can
save almost 15% of the overall consumption of the system.
This approach has almost no cost in hardware and perfor-
mance, and it is a particular characteristic of stack-like pro-
cessors.

Fig. 11. Advantages of the getstatic alignment in the overall energy
consumption

In none of the studied examples we found an algorithm
that spends less energy in the VLIW 8. However, we have
not used more sophisticated techniques, like software pipe-
lining and superblock, to better expose the parallelism of
the applications. For loop intensive programs, software pi-
pelining provides performance gains ranging from 50% to
300% and superblock from 10% to 25% [24]. Even though
none of those techniques was used, a gain of 3 times in
energy consumption was shown in the VLIW 4, compared
to the low-power version (considering the unrolled ver-
sions of IMDCT), demonstrating the potential of this Java
VLIW architecture.

VI. CONCLUSIONS AND FUTURE WORK

We demonstrated that in algorithms that present a high
level of parallelism, one could obtain a meaningful de-
crease in the energy consumption, taking advantage of the
VLIW technique in stack-like processors. Besides the op-
portunity of using the memory accesses alignment, the
search for the parallelism and the communication among
flows are facilitated, because of the stack-like architecture
which Java is based. For future work, more algorithms con-
cerning the embedded system domain and optimizations
aimed at the VLIW architecture will be evaluated. Other
alternatives to increase the VLIW performance, such as the
use of other techniques to find the instruction parallelism
inside the program, like software pipelining, superblocks,
and static speculative execution, will be studied, bringing
even better results.

VII. REFERENCES

[1] Schlett, M. Trends in Embedded-Microprocessor Design. In Comput-
er, vol. 31, n. 8, 1998, 44–49

[2] Takahashi, D. Java Chips Make a Comeback. In Red Herring, 2001
[3] Lawton, G. Moving Java into Mobile Phones. In Computer, vol. 35,

n. 6, 2002, 17-20
[4] Tiwari, V., Malik, S., Wolfe, A. Power Analysis of Embedded Soft-

ware: A First Step Towards Software Power Minimization. In IEEE
Transactions on VLSI Systems, vol. 2, n. 4, Dec. 1994, 437–445

[5] Chen, G., Shetty, R., Kandemir, M., Vijaykrishnan, N., Irwin, M.
Tuning garbage collection for reducing memory system energy in an
embedded java environment. In ACM Transactions on Embedded
Computing Systems, vol. 1, n. 1, Nov. 2002, 27-55

[6] O’Connor, J. M., Tremblat, M. Picojava-I: the Java Virtual Machine
in Hardware. In IEEE Micro, vol. 17, n. 2, Mar-Apr. 1997, 45-53

[7] Sun Microsystems. In PicoJava-II Microarchitecture Guide, Mar.
1999

[8] Kreuzinger, J., Marston, R., Ungerer, Th., Brinkschulte, U., Kra-
kowski, C. The Komodo Project: Thread-based Event Handling Sup-
ported by a Multithreaded Java Microcontroller. In 25th Euromicro
Conference, Sep. 1999, 2122-2128

[9] Nakamura, K., Sakai, K., Ae, T. Real-Time Multimedia Data
Processing using VLIW Hardware Stack Processor, In Proceedings
IEEE Workshop on Parallel and Distributed Real-Time Systems,
1995, 84-89

[10] Tremblay, M., Chan, J., Chaudhry, S., Conigliaro, A., Tse, S. The
MAJC Architecture: A Synthesis of Parallelism and Scalability. In
IEEE Micro, vol. 20, n. 6, 2000, 12-25

[11] Gray, J., Naylor, A., Abnous, A., Bagherzadeh, N. VIPER: A
25MHz, 100 MIPS Peak VLIW Microprocessor. In Proceedings of
the 1993 IEEE Custom Integrated Circuits Conference, San Diego,
1993.

[12] Suga, A., Matsunami, K. Introducing the FR500 embedded micro-
processor. In IEEE Micro, Jul-Aug. 2000, 21-27

[13] Seshan, N. High VelociTI Processing. In IEEE Signal Processing
Magazine, vol. 15, n.2, March 1998, 86-101

[14] Ito, S.A., Carro, L., Jacobi, R.P. Making Java Work for Microcon-
troller Applications. In IEEE Design & Test of Computers, vol. 18, n.
5, 2001, 100-110

[15] Beck, A.C.S., Carro, L. Low Power Java Processor for Embedded
Applications. In: IFIP 12th International Conference on Very Large
Scale Integration, Germany, December (2003)

[16] Hennessy, J. L., Patterson, D. A. Computer Architecture: A Quantita-
tive Approach, Morgan Kaufmann Publishers, 3th edition, 2003

[17] Beck, A.C.S., Mattos, J.C.B., Wagner, F.R., Carro, L. CACO-PS: A
General Purpose Cycle-Accurate Configurable Power-Simulator. In
16th Brazilian Symp. Integrated Circuit Design (SBCCI 2003), Sep.
2003

[18] Chen, R., Irwin, M. J., Bajwa, R. Architecture-Level Power Estima-
tion and Design Experiments. In ACM Transactions on Design Au-
tomation of Electronic Systems, vol. 6, n. 1, Jan. 2001, 50-66

[19] Leonardo Spectrum, available at homepage:
http://www.mentor.com/synthesis

[20] Pouwelse, J., Langendown, K., Sips, H. Dynamic Voltage Scaling on
a Low-Power Microprocessor. In The Seventh Annual International
Conference on Mobile Computing and Networking, 2001, 251-259

[21] Transmeta Corporation, Tm5400 processor specifications,
http://www.transmeta.com

[22] Montanaro J. and et. al. A 160-MHz, 32-b, 0.5-W CMOS RISC mi-
croprocessor. In IEEE Journal of Solid-State Circuits, vol. 31, n.
11, Nov. 1996, 1703 - 1714

[23] Inoue, K., Ishihara, T., Murakami, K. Way-predicting set-associative
cache for high performance and low energy consumption. In Pro-
ceedings on Low Power Electronics and Design, Aug. 1999, pp. 273
- 275

[24] Lee, M., Tirumalai, P., Ngai, T. Software Pipelining and Superblock
Scheduling: Compilation Techniques for VLIW Machines. In Pro-
ceedings of the 26th Hawaii International Conference on System
Sciences, Jan. 1993

42 BECK et al.: A VLIW LOW POWER JAVA PROCESSOR FOR EMBEDDED APPLICATIONS

	capa.pdf
	capa_interna.pdf
	INDICE.pdf
	jics4_ARTIGOS_CAPA_FINAL_BLA.pdf

