
7Journal Integrated Circuits and Systems 2007; v.2 / n.1:7-13

Measuring the Efficiency of Cache Memory on
Java Processors for Embedded Systems

ABSTRACT

Java, with its advantages as being an overspread multiplatform object oriented language, has been
gaining popularity in the embedded system market over the years. However, because of its extra
layer of interpretation, it is also believed that it is a slow language while being executed.
Nevertheless, when this execution is done directly in hardware, Java advantages caused by its stack
nature start to appear. One of these advantages concerns memory utilization, impacting in less
accesses and cache misses. In this work we analyze this impact in performance and energy con-
sumption, comparing a Java processor with a RISC one based on a MIPS architecture with similar
characteristics.

Index Terms: Cache Memory, Java, Power consumption, MIPS, Stack Machines

Antonio Carlos S. Beck, Mateus B. Rutzig and Luigi Carro

Department for Computer Science, Federal University of Rio Grande do Sul-Porto Alegre, Brazil,
e-mail: {caco, mbrutzig, carro}@inf.ufrgs.br

1. INTRODUCTION

While the number of embedded systems does
not stop to grow, new and different applications, like
cellular phones, mp3 players and digital cameras keep
arriving at the market. At the same time, embedded
architectures are getting more complex, smaller, more
portable and with more stringent power require-
ments, posing great challenges to the design of this
kind of systems. Additionally, another issue is becom-
ing more important nowadays: the necessity of reduc-
ing the design cycle.

This last affirmative is the reason why Java is
becoming more popular in embedded environments,
replacing day by day traditional languages. Java has an
object oriented nature, which facilitates the program-
ming, modeling and validation of the system.
Furthermore, being multiplatform, a system that was
built and tested in a desktop, for instance, can migrate
to different embedded systems with a small number of
modifications. Moreover, Java is considered a safe lan-
guage, and has a small code size, since it was built to
be transmitted through internet.

Not surprisingly, recent surveys revealed that
the presence of Java in devices such as consumer elec-
tronics (digital TV, mobile phones, home networking)
as well as industrial automation (manufacturing con-
trols, dedicated hand held devices) is increasing day by
day. It is estimated that more then 600 million devices
will be shipped with Java by 2007 [1][3]. Furthermore,

it is predicted that more then 74% of all wireless
phones will support Java next year [2][4]. This trend
can be observed nowadays, where most of the com-
mercialized devices as cellular phones already provide
support to the language. This means that current
design goals might include a careful look on embed-
ded Java architectures, and their performance versus
power tradeoffs must be taken into account.

However, Java is not targeted to performance
or energy consumption, since it requires an addition-
al layer in order to execute its bytecodes, called Java
Virtual Machine (JVM), responsible for the multiplat-
form feature of Java. And that is why executing Java
through the JVM could not be a good choice for
embedded systems.

A solution for this issue would be the execution
of Java programs directly in hardware, taking off this
additional layer, but at the same time maintaining all
the advantages of this high level language. Using this
solution highlights again another execution paradigm
that was explored in the past [5]: stack machines.
Since the JVM is based on a stack machine, obviously
the hardware for native Java execution should follow
the same approach, in order to maintain full compati-
bility.

Additionally, embedded applications today are
not as small to fit in the cache and, at the same time,
they are not as large to use configurations of tradi-
tional desktop environments either. Nevertheless, in
nowadays embedded systems they can consume up to

Measuring the Efficiency of Cache Memory on Java Processors for Embedded Systems
Beck, Rutzig & Carro

8 Journal Integrated Circuits and Systems 2007; v.2 / n.1:7-13

50% of the total energy of the system [6] and occupy
a significant part of the total area of the chip. Adding
these facts to all the constraints cited before explains
why cache memories have gained more importance in
the embedded domain.

Hence, in this paper we show the advantages of
Java machines regarding energy consumption and per-
formance of the cache memory when comparing to
traditional RISC ones, considering the particularities
of embedded systems. We demonstrate that, thanks to
the particular execution method based on a stack,
these machines have less memory accesses and less
cache misses concerning the instruction memory. This
way, the designer can take advantage of all the bene-
fits of a high level language such Java, shrinking the
design cycle, and at the same time increasing the over-
all performance – proving that Java can also be a high
performance and low power alternative when execut-
ed directly in hardware.

This work is organized as follows: Section 2
briefly shows a review of the existing Java processors
and some recent works concerning cache memory for
embedded systems. In Section 3 we discuss the
processors used in the evaluation and its particulari-
ties. Section 4 presents the simulation environment
and the results regarding performance of the cache
memory on the systems with various configurations.
The last section draws conclusions and introduces
future work

2. RELATED WORK

In the literature, one can rapidly find a great
number of Java processors aimed at the embedded
systems market. Sun’s Picojava I [7], a four stage
pipelined processor, and Picojava II [8], with a six
stage pipeline, are probably the most studied ones.
Even though the specifications of such processors
allow a variable size for the data and instruction
caches, there is no study about the impact of stack
execution on these cache memories.

Furthermore, we can cite some works regard-
ing cache memory specifically for embedded systems.
In [9], compiler techniques, memory access transfor-
mations and loop optimizations are used in order to
decrease the number of cache accesses, hence increas-
ing performance and saving power. In [10] a tech-
nique aimed at reconfiguring the cache by software in
order to change its associativity configuration with the
objective of saving power is presented. In [11], taking
advantage of the frequent values that widely exist in a
data cache memory, a technique is proposed to reduce
the static energy dissipation of an on-chip data cache.
Other approaches, such as the use of scratchpads in
the embedded domain [12], have been applied as well.

In this specific work, we study the effect of
cache memories in Java based embedded systems, and
why it differs from traditional ones because of its stack
machine architecture.

3. ARCHITECTURES EVALUATED

It is very hard to compare two different archi-
tectures, even when they are of the same family.
Comparing two different hardware components that
execute instructions in a different way is even more
difficult. As a consequence, in this work we try to
make general characteristics, such as number of
pipelines stages, equivalent.

A. Architecture Details

The RISC processor used is based on the tradi-
tional MIPS-I instruction set [13]. It has a five stages
pipeline: instruction fetch, decode and operand fetch,
execution, memory access and write back. This MIPS
implementation has 32 registers in its bank.

The Java processor used is the Femtojava [14],
which implements a subset of Java instructions. It
does not support dynamic allocation of objects neither
garbage collection. Consequently, all objects are stati-
cally allocated in Java programs. This processor has
the same number of pipeline stages that the RISC one
has. However, the structure of the pipeline is a little
different, as shown in Figure 1.

The first stage is instruction fetch, as in the
MIPS processor. The second stage is responsible for
decoding instructions. The next one is the operand
fetch. It is important to note that, in opposite to the
MIPS processor, operand fetch cannot be performed
at same time as decoding, because it is not known pre-
viously which operands to fetch (this data is not intrin-
sically available in the opcode), as in MIPS architec-
ture. On the other hand, there is no instruction that
accesses the register bank and the memory at the same
time. As a consequence, the memory access, which is
a separated pipeline stage in the MIPS, is made in the
forth stage together with the execution. The write
back to the register bank is the last stage, in both
processors.

Instruction
Fetch

Instruction
Fetch

RISC

Java

1st

Decode/
Operand Fetch

Decode

2nd

Execute

Operand
Fetch

3rd

Memory

Execute/
Memory

4th

Write Back

Write Back

5th→ → → →

Figure 1. Differences in the pipeline stages between the two
processors

Measuring the Efficiency of Cache Memory on Java Processors for Embedded Systems
Beck, Rutzig & Carro

9Journal Integrated Circuits and Systems 2007; v.2 / n.1:7-13

The stack in the Java processor is implemented
in an internal register bank. In our benchmark set, the
stack does not increase more than 32 values. This way,
there are 32 registers in the bank implementing the
stack, the same number of registers used in the MIPS
processor. However, it is important to mention that
local variables in the Java processor are also saved in the
stack (hence, in the internal register bank). It facilitates
passing parameters between methods, since Java uses
the concept of frames. On the other hand, local vari-
ables in the MIPS processor are saved in the main mem-
ory, not in the register bank, increasing the number of
memory accesses for this processor and, as a conse-
quence, giving some advantage to the the Java Pro-
cessor. In order to keep the comparison as fair as pos-
sible, in all our benchmark set we implemented these
local variables as global. This way, there will be access-
es to the main memory in both processors. Moreover,
data in the memory will also be accessed in static vari-
ables (such as vectors) and information about methods.

B. Computational Methods

To better illustrate the difference between
these two paradigms, let’s start with an example. In
RISC machines, to make a sum of two operands, just
one instruction is needed:

add r1, r2, r3
where r2 and r3 are the source operands and r1

is the target. In stack machines, however, this opera-
tion needs three different instructions:

push OP1
push OP2
add
At first sight, this characteristic could be con-

sidered as a disadvantage. However, stack machines
keep the operands always in the stack. This means that
the next instructions will use operands that are already
present in the stack, generated by the instructions exe-
cuted before. Hence, the push instructions are not
needed anymore. As more operations are executed,
more data is reused from the stack. Since it is well
known that each basic block usually has more than
just on single operation, stack machines can be very
economic concerning the number of instructions.
This characteristic will reflect in the instruction cache
hits and misses, as it will be shown in next section.

Furthermore, in Java, instructions have a vari-
able length: 1, 2 or 3 bytes; in opposite to the MIPS
instructions, with a fixed size of 4 bytes. In order to
avoid bubbles in the pipeline structure, the Java
processor is implemented to fetch 4 bytes at each cycle.
This also makes the comparison impartial: the size of
each word in the cache memory has exactly the same
number of bits for both processors. As we show in the
next section, the smaller size of the instructions
together with the stack paradigm leads to an incredible
difference in the number of instruction cache misses.

4. RESULTS

Three steps were necessary to gather the
results. Firstly, using a SystemC description of both
processors, traces of memory accesses for each appli-
cation were generated. Then, another simulator,
which in turn uses the traces generated before, was
used. It has as inputs the cache size, associativity and
spatial locality, in order to better explore the design
space. After that, the cache simulator gives as output
the number of cache misses and hits depending on the
input configuration. Finally, using this information,
the ECACTI tool [15] was used for the power con-
sumption evaluation. It is very important to mention
that this simulation also takes into account the static
power. Statistics for the off-chip memory consump-
tion as the bus were taken from [17], considering this
external memory working at 50 Mhz, 2V, implement-
ed in a 0.25 technology.

Different types of algorithms were chosen and
simulated over the architectures described in Section
3: Bubble (sort 100 elements); IMDCT (plus three
unrolled versions); an algorithm to solve the Crane
problem; three algorithms that belong to the Java
Grande Benchmark set [16]: Lufact, that solves a N x
N linear system using LU factorization followed by a
triangular solve; SOR, performs 100 iterations of suc-
cessive over-relaxation on a N x N grid; Sparse which
is a sparse matrix multiplication; and a complete MP3
player that executes 1 frame at 40kbit, 22050Hz, joint
stereo. Each algorithm has two versions, in Java and
C, compiled by Sun´s Java Compiler [18] and GCC
[19], respectively.

First of all, we analyze the number of memory
accesses of both processors. It is important to remem-
ber that, as explained earlier, the stack in our Java
processor is implemented in a register bank instead of
using the main memory. Table 1 demonstrates the
number of accesses in the data and instruction mem-
ories. Dividing the table in data and instruction mem-
ories, the first and second columns show the number
of accesses of each architecture, and the last column
demonstrates the relative difference of accesses that

Table 1. Number of Accesses in the Data and Instruction Memories

Data Memory Instruction Memory
Algorithm Java MIPS Difference Java MIPS Difference
Bubble 100 112933 113412 1.00 96508 314240 3.25
Crane 8097 9877 1.21 7700 23703 3.07
IMDCT N 10741 8664 0.80 13475 39241 2.91
IMDCT 1 6305 4231 0.67 8326 22173 2.66
IMDCT 2 6003 3912 0.65 7848 19740 2.51
IMDCT 3 4234 2143 0.50 3824 5998 1.56
Lufact 12617 22927 1.81 14233 60658 4.26
MP3 475887 746186 1.56 503251 2513397 4.99
SOR 197112 231980 1.17 204164 777951 3.81
SPARSE 115549 131753 1.14 165725 602572 3.63
Average 1.05 3.26

Measuring the Efficiency of Cache Memory on Java Processors for Embedded Systems
Beck, Rutzig & Carro

10 Journal Integrated Circuits and Systems 2007; v.2 / n.1:7-13

the RISC architecture has, when compared to the Java
processor. As it can be seen, in the average, the Java
processor has fewer accesses in instruction memory
and almost the same in data one. The enormous dif-
ference concerning the instruction memory was
explained in the last section. In the next sub-sections
we analyze the impact of this fact in the performance
and power consumption.

For the experiments with the cache, we ana-
lyzed instructions and data caches separately, varying
their size (64, 128 and 2048 lines); spatial locality
(one and two words per line); and associativity (direct
mapped, 2-way and 4-way associative).

A. Performance

Firstly, we demonstrate in table 2 (at the end of
this work) the number of instruction and data cache
misses in both processors, using different cache con-
figurations (because of space limitations, we are con-
sidering 64 and 2048 words without exploring spatial
locality). As can be observed, concerning instruction
cache accesses, the configuration that benefits the
most the Java processor (the one that results in the
bigger difference of cache misses between the Java and
MIPS processors, when dividing the total number of
memory accesses by the number of cache misses) is
the follow: 64 lines; 2 words per line and 4-way asso-
ciative. For the MIPS processor: 256 lines, 2 words
per line and direct mapped. Even in this configuration
there is a huge advantage in instruction cache misses
for the Java processor. This proves that, no matter the
cache characteristics, stack machines will always pres-
ent advantages in instruction memory accesses.

We repeat the same analysis for the data cache.
The best configuration for the Java processor is: 256
lines; 2 words per line and 2-way associative; and for
MIPS: 64 lines, 1 word per line and direct mapped. In
this case, depending on the algorithm, there is a small
advantage for the Java processor. Another important
thing to point out is that there is almost no difference
between different cache configurations: the propor-
tion of misses in data caches is almost the same.

Finally, figures 2 and 3 show the average num-
ber of data and instruction cache misses for each algo-
rithm of the whole benchmark set considering all pos-
sible configurations (18 in the total). This graphic
summarizes what was affirmed before: an expressive
difference in instruction cache misses and an equiva-
lence in the data memory misses, with a small advan-
tage for the Java processor in some algorithms.

B. Power and Energy

In this sub-section we analyze the power spent
by cycle and the total energy consumption caused by

cache misses. Table 3 (at the last page)shows the ener-
gy consumption in both processors following the same
format of the previous table. As it could be expected,
the energy consumption is directly proportional to the
number of misses. This way, huge energy savings con-
cerning the instruction memory is achieved, and a very
similar consumption in data memory is obtained.

Finally, we demonstrate the average power and
energy consumption for each algorithm considering
the whole set of cache configurations. As it is demon-
strated in Figure 4, considering the instruction cache,
there is less power consumption in the Java processor.
Since there are less cache misses, less accesses to the
off-chip memory are necessary. Moreover, as there are
less overall memory accesses, the difference in energy
consumption between the two processors is even
higher (figure 5).

The same process occurs in data accesses. Power
is saved because there are less off-chip accesses per cycle
(figure 6) and less energy is spent because there is less
overall accesses (figure 7) – although in a different pro-
portion when comparing to the instruction memory.

In all results demonstrated before no compiler
optimization flags were used, in order to make the

Figure 2. Average number of instruction cache misses

Figure 3. Average number of data cache misses

Measuring the Efficiency of Cache Memory on Java Processors for Embedded Systems
Beck, Rutzig & Carro

11Journal Integrated Circuits and Systems 2007; v.2 / n.1:7-13

comparison as fair as possible. Optimizations as forc-
ing values to be in the registers, loop unrolling and
method inlining are not available for Java Compilers
yet – although they are possible to be made in java
bytecodes. However, in order to analyze the impact of
such optimizations in the results, in the figure 8 and 9
we make a first analysis, comparing the number of
memory accesses and cache misses (instruction and
data memory, respectively) of the Femtojava Processor
with the MIPS processor when the benchmarks are
compiled with the higher possible level of optimiza-
tion (-O3). As it can be observed, in certain cases
there is a huge impact in the number of accesses.

It is important to remember that Java technol-
ogy is relatively new, and the development of new
compilers and the improvement of them is an active
area, in opposite to C compilers. Moreover, most
compilers optimizations are not used in Java because
of the interpreted nature of most applications. As Java
hardware machines become available, it is very likely
that these common optimizations will be included in
future versions of Java compilers and, as a conse-
quence, the advantages of stack machines concerning
memory accesses will remain, as we demonstrated
when we compared both architectures with the same
level of compiler resources.

Figure 6. Average power consumption: data memory

Figure 7. Total energy consumption: data memory

Figure 5. Total energy consumption: instruction memory

Figure 8. Comparison: number of instruction accesses when
using GCC optimization

Figure 9. Comparison: number of data accesses when using
GCC optimization

Figure 4. Average power consumption: instruction memory

Measuring the Efficiency of Cache Memory on Java Processors for Embedded Systems
Beck, Rutzig & Carro

12 Journal Integrated Circuits and Systems 2007; v.2 / n.1:7-13

Table 3. Energy Consumption: Data and Instruction Memories

Femotojava MIPS

Algorithm
Direct Mapped 2-Way Associative 4-Way Associative Direct Mapped 2-Way Associative 4-Way Associative

Size 64 Size 2048 Size 64 Size 2048 Size 64 Size 2048 Size 64 Size 2048 Size 64 Size 2048 Size 64 Size 2048
Instruction Misses

BUBBLE100 4622500 9093762 5985222 9315584 9293107 11703380 31401292 29614310 41461715 30336657 66444558 38111566

CRANE 2396929 1446902 2578221 1251341 2867143 1388874 9017035 7017051 9160023 7313817 9939053 7572986

IMDCT N 676353 1298316 866589 1329787 1328378 1663183 2086467 3780314 2698561 3871952 4159112 4842844

IMDCT 1 3277721 977414 3409005 999917 3722066 1205903 9677175 9011353 9980190 9183079 10718838 9731127

IMDCT 2 3424789 1125681 3532040 1150457 3793481 1344601 8615317 9039787 8885083 9210416 9542680 9698246

IMDCT 3 1668944 1751173 1721204 1784227 1848592 1878728 2617765 2746740 2699733 2798585 2899544 2946813

LUFACT 1466261 1612687 1696992 1520186 1892724 1870845 13194239 8153040 15557640 8266489 18351883 8956713

MP3 155850840 111980692 166367564 95259123 175360694 103843738 749623160 656697406 773306823 700529723 859700972 767902453

SOR 9823544 19278256 12706350 19748227 19704116 24799638 195407580 73822337 237543484 75590596 294853991 94762686

SPARSE 8232485 15655977 10374209 16037592 16030695 20137947 213362901 57074229 247690881 58477708 269870020 73394632

Data Misses
BUBBLE 100 13841556 17450956 16006035 17829329 19826680 20672943 14104256 17547680 16080693 18098734 19950178 20824238

CRANE 1605763 1804099 1765653 1896779 2008290 2080738 2194871 2511890 2389788 2519971 2823847 2756449

IMDCT N 1685268 2074613 1802174 2111544 2168286 2376472 1564401 1871620 1670252 1909573 1965569 2123483

IMDCT 1 1150195 1362274 1214547 1386094 1429387 1541291 1028694 1160654 1080482 1184413 1228508 1289035

IMDCT 2 1101189 1302575 1160929 1324046 1366279 1471772 980432 1100084 1028919 1121467 1163766 1217458

IMDCT 3 780828 893115 681523 770778 847296 875507 565610 605839 598823 570791 603341 621193

LUFACT 2284397 2323109 2469519 2438169 2917931 2773195 3767177 4203988 4004314 4357870 4773290 4876462

MP3 93985029 102628840 98201343 104301335 111909632 115130406 171384300 171618926 175397484 174102160 192336542 191217904

SOR 31461830 33781470 30891475 31225477 34046601 34145275 33670458 35957658 35531631 37416209 42254204 42943643

SPARSE 24376877 21239089 25540304 23546070 26601941 24705859 25097529 28099203 25196879 28713799 30201961 31971252

5. CONCLUSIONS

Java became popular mainly because it is an
object oriented language and for its ease of use. It is
also common sense that it is a slow language while
being executed. In this paper we showed that when
executing Java directly in hardware, advantages start
to appear. In the case of the memory sub-system,
specifically instruction caches, stack machines can have

a higher cache hit ratio that, besides increasing the
overall performance, reflects in less dynamic and stat-
ic power consumption. The data memory presents
very similar results, when the comparison is made with
equivalent configurations. This way, besides speeding
up the design cycle, Java can also bring advantages
concerning performance, area and power consump-
tion. Our next step is to compare complete architec-
tures of both processors.

Table 2. Cache Misses: Data and Instruction Caches

Femotojava MIPS

Algorithm
Direct Mapped 2-Way Associative 4-Way Associative Direct Mapped 2-Way Associative 4-Way Associative

Size 64 Size 2048 Size 64 Size 2048 Size 64 Size 2048 Size 64 Size 2048 Size 64 Size 2048 Size 64 Size 2048
Instruction Misses

BUBBLE 100 46 46 46 46 46 46 42210 161 56742 161 93577 161
CRANE 5221 1986 5414 1376 5492 1233 20287 13157 19817 13586 19780 12703
IMDCT N 86 85 86 85 86 85 551 246 701 246 1001 246
IMDCT 1 7410 534 7454 534 7544 534 22173 19033 22173 19033 22173 19033
IMDCT 2 7847 1065 7847 1065 7847 1065 19740 19740 19740 19740 19740 19740
IMDCT 3 3824 3824 3824 3824 3824 3824 5998 5998 5998 5998 5998 5998
LUFACT 2025 753 2104 402 1355 398 26497 6727 30409 6542 32331 4353
MP3 339157 177658 348338 126327 327887 115892 1619910 1155028 1591398 1238030 1595987 1252137
SOR 212 208 212 208 212 208 407200 1793 487906 1715 568243 1510
SPARSE 837 189 327 189 266 189 474916 1098 541970 1134 547256 1156

Data Misses
BUBBLE 100 21746 18767 23239 18767 23167 18902 22363 18909 23355 19370 23367 19154
CRANE 3137 2865 3258 3016 3176 2972 4434 4350 4582 4236 4840 4215
IMDCT N 3017 2925 2931 2908 2933 2906 2961 2904 2922 2903 2925 2902
IMDCT 1 2185 2114 2124 2103 2126 2101 2127 2096 2109 2098 2122 2098
IMDCT 2 2096 2028 2034 2014 2038 2012 2042 2012 2027 2011 2034 2009
IMDCT 3 1489 1360 1081 980 1137 980 1192 1111 1201 984 1026 977
LUFACT 4328 3123 4351 3302 4403 3364 6877 5627 6662 5804 6635 5673
MP3 183366 159031 177133 157871 170852 155330 349299 278758 332907 276059 311434 272444
SOR 56742 41887 48171 33043 38993 27759 58144 38855 54569 40690 51532 40120
SPARSE 48527 28501 47378 33527 40011 28940 48392 43165 43913 43268 45285 43265

Measuring the Efficiency of Cache Memory on Java Processors for Embedded Systems
Beck, Rutzig & Carro

REFERENCES

[1] The Embedded Software Strategic Market Intelligence. Java
in Embedded Systems. http://www.vdc-corp.com/

[2] S. McAteer. Java will be the dominant handset platform.
www.microjava.com/articles/perspective/zelos/.

[3] D. Mulchandani. Java for Embedded Systems. Internet
Computing, 31(10):30–39, May 1998.

[4] Lawton, “Moving Java into Mobile Phones”, Computer, vol.
35, n. 6, 2002, pp. 17-20.

[5] P. Koopman, Stack Computers: The New Wave, Halsted
Press, 1st edition, 1989

[6] S. Segars, “Low power design techniques for microproces-
sors,” Int. Solid-State Circuits Conf. Tutorial, 2001.

[7] J. M. O’Connor, M. Tremblat, “Picojava-I: the Java Virtual
Machine in Hardware”, IEEE Micro, vol. 17, n. 2, Mar-Apr.
1997, pp. 45-53

[8] Sun Microsystems, PicoJava-II Microarchitecture Guide, Mar.
1999.

[9] W. Shiue, C. Chakrabarti, “Memory Design and Exploration
for Low Power, Embedded Systems”, The Journal of VLSI
Signal Processing - Systems for Signal, Image, and Video
Technology, Vol. 29, No. 3, Nov. 2001, pp. 167-178

[10]C. Zhang, F. Vahid, W. Najjar, “A highly configurable cache
architecture for embedded systems”, Proceedings of the 30th
annual international symposium on Computer architecture
(ISCA), 2003

[11]C. Zhang, J. Yang, F. Vahid,“ Low Static-Power Frequent-
Value Data Caches”, Proceedings of the. Design, Automation
and Test in Europe Conference (DATE), 2004

[12]R. Banakar, S. Steinke, B. Lee, M. Balakrishnan, P. Marwedel,
“Scratchpad Memory: A Design Alternative for Cache On-
chip memory in Embedded Systems”, Proc. of the 10th
International Workshop on Hardware/Software Codesign,
CODES, 2002

[13]J. L. Hennessy, D. A. Patterson, Computer Organization and
Design: The Hardware/Software Interface, Morgan Kaufmann
Publishers, 3th edition, 2005

[14]A.C.S.Beck, L. Carro, , “Low Power Java Processor for
Embedded Applications”. In: IFIP 12th International
Conference on Very Large Scale Integration, Germany, 2003

[15]G. Reinman and N. Jouppi. Extensions to cacti, 1999.
Unpublished document.

[16]D. Gregg, J. Power, “Platform Independent Dynamic Java
Virtual Machine Analysis: the Java Grande Forum
Benchmark Suite”, Joint ACM Java Grande - ISCOPE Conf.
Proc., 2001

[17]K. Puttaswamy, K. Choi, J. C. Park, V. J. Mooney, A.
Chatterjee, P. Ellervee. “System Level Power-Performance
Trade-Offs in Embedded Systems Using Voltage and
Frequency Scaling of Off-Chip Buses and Memory”,
ISSS’02., October, 2002

[18]Java Tecnology Homepage, http://java.sun.com/
[19]GCC Homepage, http://gcc.gnu.org/.

13Journal Integrated Circuits and Systems 2007; v.2 / n.1:7-13

