
29Journal Integrated Circuits and Systems 2007; v.2 / n.1:29-36

Communication Aware Optimization of
the Task Binding in Hardware/Software Reconfigurable

Networks

Thilo Streichert, Christian Strengert, Dirk Koch, Christian Haubelt, and Jürgen Teich

Department for Computer Science 12, University of Erlangen-Nuremberg, Germany,
e-mail : {streichert,dirk.koch,haubelt,teich}@cs.fau.de

1. INTRODUCTION

Available networked embedded systems, e.g., in
the field of automotive networks bind functionality
statically onto electronic control units (ECUs). Thus,
if a node fails, the functionality hosted by the control
unit will be lost, and due to data dependencies, other
functions on working nodes may not operate either.
The same holds true for erroneous communication
links which may lead to an isolation of a node or
changing routes in point-to-point networks.
However, in order to tolerate defects of computa-
tional nodes, it is necessary to replicate computation-
al nodes and links such that a certain degree of redun-
dancy is available. Obviously, introducing redundan-
cy into embedded networks has an essential drawback
concerning monetary costs, power consumption,
size, weight, etc. Therefore, we will present an
approach for tolerating permanent faults like node or
link defects by separation of functionality from the
physical hardware and rebinding tasks from defect
nodes onto working nodes.

When using reconfigurable devices such as
FPGAs together with internal CPU cores, it will be
possible to assign tasks implemented in either hard-
ware or software, dynamically to the resources in the
network. Besides these reconfigurable devices, com-

putational nodes in a network contain dedicated ana-
log hardware for driving sensors and actuators which
leads to a certain heterogeneity in the network. This
irregularity is typical for embedded systems that con-
sist of specialized nodes for certain purposes. For
such reconfigurable networks, we will show how to
reduce the degree of redundancy on the one hand
while increasing fault tolerance and flexibility on the
other hand. Essential for achieving these objectives is
a novel class of algorithms called online hardware/
software partitioning which determines a binding of
tasks to available resources in heterogeneous net-
works.

Binding tasks onto computational nodes has
been investigated in many research fields. The offline
approach towards hardware/software partitioning
has been considered by many researchers [1][2][3].
For example, Blickle [1] synthesizes so-called Pareto-
optimal systems out of many design alternatives with
the help of Evolutionary Algorithms. Such an
approach helps a system designer for an unbiased
decision making.

Also, so-called load balancing algorithms have
received a considerable interest and solve the problem
of task binding with the objective of homogeneously
distributing the task loads onto CPUs at runtime.
Note that the term task is used in the same sense as

ABSTRACT

In this paper, a new methodology for tolerating link as well as node defects in self-adaptive recon-
figurable networks will be presented. Currently, networked embedded systems need a certain level
of redundancy for each node and link in order to tolerate defects and failures in a network. Due to
monetary constraints as well as space and power limitations, the replication of each node and link
is not an option in most embedded systems. Therefore, we will present a hardware/software parti-
tioning algorithm for reconfigurable networks that optimizes the task binding onto resources at run-
time such that node/link defects can be handled and data traffic on links between computational
nodes will be minimized. This paper presents a new hardware/software partitioning algorithm, an
experimental evaluation and for demonstrating the applicability, an implementation on a network of
FPGA-based boards.

Index Terms: Reconfigurable network, Task placement, Dynamic hardware/software partitioning

Communication Aware Optimization of the Task Binding in Hardware/Software Reconfigurable Networks
Streichert, Strengert, Koch, Haubelt & Teich

30 Journal Integrated Circuits and Systems 2007; v.2 / n.1:29-36

functionality. The goals of load balancing are a) the
reduction of latency or average response time, b) to
provide fairness and c) reduction of overheads due to
many context switches on highly utilized nodes. Load
balancing approaches like Token Distribution [4][5],
Diffusion [6][7], and so-called Balancing Circuits [8]
are distributed algorithms and are thus applicable for
fault-tolerant networked systems.

Another field of placing functionality on
resources has been opened by Vahid et al. Based on a
platform consisting of reconfigurable hardware and a
CPU [9], a profiler extracts critical code regions,
decompiles them and synthesizes them to hardware.
Achieving an average speedup of 2.6 [10] for differ-
ent benchmarks, this approach to dynamic hard-
ware/software partitioning shows the potential of
dynamically assigning tasks to software or hardware
resources.

A first approach to online hardware/software
partitioning for reconfigurable networks [11] [12]
which is based on a combination of diffusion algo-
rithms and bi-partitioning balances the load between
the resources and thus, maximizes the amount of free
resources on each single node. With this strategy the
likelihood that the load of defect nodes or newly
arriving tasks may be adopted by every node is
increased.

Unfortunately, all the presented approaches
either do not consider hardware/software reconfig-
urability at all or provide no extension to reconfig-
urable networks.

Also, heterogeneities due to sensors and actu-
ators attached to single nodes in the network are not
respected by the algorithms but strongly affect the
placing of functionality onto nodes drastically.
Moreover, none of these approaches consider the
minimization of data traffic on links between compu-
tational nodes.

To overcome these drawbacks, we will explain
in Sec. 2 a network model in which certain sensors
and actuators can only be connected to certain nodes
and tasks reading the sensor values or controlling the
actuators have limited binding possibilities. Different
to the approaches in [11] where the binding of tasks
to resources is done with the objective of minimizing
the load on each single resource, the methodology
presented here tries to minimize the congestion on
the communication links while respecting utilization
constraints of hardware and software resources. The
entire hardware/software partitioning approach runs
in a distributed manner in the network and is
described in Sec. 3. In Sec. 4, we present an imple-
mentation of the online hardware/software partition-
ing algorithm as well as an evaluation and comparison
of our methodology to an approach with global
knowledge.

2. CONCEPTS AND MODELS

In this paper, networks are considered consist-
ing of hardware/software reconfigurable nodes. The
networks have a fixed topology which is only influ-
enced by node and link defects. Different to ad-hoc
networks the size and the dynamic effects are not arbi-
trary. Assuming that all network nodes are connected
via point-to-point connections and having more than
one incoming and outgoing communication link, the
considered networks should be fault-tolerant against
permanent and transient faults as well as babbling
idiot failures. Presuming a network with reconfig-
urable nodes allows for implementing a task in either
software and run it locally sequentially together with
other software tasks or in hardware (e.g., using recon-
figurable hardware technology). Typical for embed-
ded systems are dedicated I/O-interfaces which might
not be available on each node and lead to a heteroge-
neous network structure.

Exemplarily, Figure 1 shows a network topolo-
gy with four computational nodes ci � C, sensors si � S,
actuators ai � A and communication links represented
by the edges between the nodes ci. The sensors and
actuators are not connected to all nodes in the net-
work, but only to some. Thus, the presented method-
ology in Sec. III has to be able to bind functionality
onto a heterogeneous network structure. Similar to
the network structure, the functionality is modeled by
a so-called sensor-controller-actuator chain graph and
distinguishes between sensor tasks ti

s, controller tasks ti
c,

and actuator tasks ti
a.

While sensor tasks produce data which are
processed by one or more controller tasks, actuator
tasks consume data. In Figure 1, such a sensor-con-
troller-actuator chain is represented by gray nodes and
edges in between where the edges represent data
dependencies. Annotated to these nodes and edges
are the following attributes which are necessary for
the online hardware/software partitioning approach:

Figure 1. Functionality is modeled with a so-called sensor-con-
troller-actuator chain. This functionality will be bound with certain
restrictions onto the nodes of the network topology. Restrictions
occur due to resource constraints where the parameters C1, D1,
LUT1, MC1 denote the resource usage of a task.

Communication Aware Optimization of the Task Binding in Hardware/Software Reconfigurable Networks
Streichert, Strengert, Koch, Haubelt & Teich

31Journal Integrated Circuits and Systems 2007; v.2 / n.1:29-36

Execution Time (Ci) and Deadline (Di):
In order to analyze the schedulability of a task ti

c

on a CPU without violating deadlines, the execu-
tion time Ci and its Deadline Di are required. With
the help of schedulability analyses for real-time
schedulers the utilization can be computed. Based
on this utilization, it can be determined whether
a task can be executed in software.

Look-Up Tables (LUT), Memory-Cells
(MC): Before a task is assigned to hardware
resources at runtime, it has to be checked if
enough resources are available. Considering cur-
rent FPGA-architectures, not only Look-Up
Tables are required to implement the hardware
functionality, moreover, memory cells or embed-
ded RAM blocks are necessary. Additional place-
ment constraints together with the shape of a
hardware module might prevent the binding of
tasks onto free hardware resources either. In sum-
mary, the feasibility of placing functionality onto
hardware resources depends in our model not
only on one parameter, but on a set of parame-
ters. Note that due to this set of parameters,
online hardware/software partitioning algorithms
which are based on load balancing algorithms are
not applicable. In general, load balancing algo-
rithms have their legitimacy in architectures or
topologies where only one parameter decides
about executability.

Migration Size (M): This parameter is
used to reduce the probability of migrating huge
tasks between nodes. In FPGA-based architec-
tures with a CPU, the migration size is given by
the sum of the binary and the bit-stream size of
task ti

c.
Data Traffic (T): The data traffic Ti,j pro-

duced by a Task ti
{s,c,a} and consumed by task

tj
{s,c,a} is annotated to the edges ei,j between the

node ti
{s,c,a} and tj

{s,c,a} in the sensor-controller-
actuator chain.

Due to the heterogeneity caused by the
sensors si and actuators ai in the network topolo-
gy, the binding of sensor tasks ti

s and actuator
tasks ti

a is restricted. In particular, a sensor task ti
s

is only allowed to be bound onto a corresponding
node si � S. In contrast, an actuator task ti

a is only
allowed to be bound onto an actuator node ai. We
assume that all controller tasks ti

c may run on each
computational node ci.

Considering Figure 1, sensor task t1
s may be

bound onto the sensor node s1, but not onto s2.
Analogously, sensor task t2

s can run on s2. For the
controller tasks t3

c , t4
c , no binding restrictions

exist. Thus, they are able to run on all computa-
tional nodes (c1, c2,c3,c4). For placing the actua-
tor task t5

a, only the actuator can be considered.

A. Formal Model

The previously literally described model can be
formally defined as follows:

DEFINITION 1 (NETWORK MODEL). The entire
system S(Gtg, G{s,c,a}) consists of a topology graph Gtg

and a set of sensor-controller-actuator chains G{s,c,a}.
DEFINITION 2 (TOPOLOGY GRAPH). The graph

Gtg(Stg, Ctg, Atg, Etg) consists of sensor nodes si � Stg, com-
putational nodes ci � Ctg and actuator nodes ai � Atg.
The edges ei � Etg � Stg � Ctg � Ctg � Ctg � Ctg� Atg

represent the connections between the three kinds of
nodes.

The nodes of the topology graph can be
refined as:

DEFINITION 3 (COMPUTATIONAL NODE). A com-
putational node has ports pi � P and �P�= deg(cj) + 1.
While the ports pi : i = 1...deg(cj) are dedicated for com-
munication between sensor nodes, computational nodes
or actuator nodes, the port p0 is dedicated for the node
internal communication.

For modeling the functionality, we define so-
called sensor-controller-actuator chains.

DEFINITION 4 (SENSOR-CONTROLLER-ACTUA-
TOR CHAIN). The sensor-controller-actuator chain
Gsca (Ts, Tc, Ta, Esca) consists of sensor tasks ti

s � Ts, con-
troller tasks ti

c � Tc, and actuator tasks ti
a � Ta,. The

edges ei
sca � Esca � Ts � Tc � Tc � Tc � Tc � Ta repre-

sent the data dependencies between the three kinds of
tasks.

Annotated to the edges and nodes can be dif-
ferent parameters which do not belong explicitly to
the model. The parameters required by our online
hardware/software partitioning approach were pre-
sented above.

In order to express, where a task ti
s, ti

c, ti
c is exe-

cuted, we define a binary variable bi,j
task:

DEFINITION 5 (TASK BINDING).

1 : if ti
{s,c,a} is executed by

bi,j
task = sj � S,cj � C or aj � A

0 : else

Equivalent to the task binding, we define a traf-
fic routing.

DEFINITION 6 (TRAFFIC ROUTING).

1 : if ei
s,c,a is routed over ek

tg and
bi,j

task = ek
tg is connected to a port pj

0 : else

In order to obtain a feasible communication, it
might be necessary that an edge ei

s,c,a = (tk, tl) is rout-
ed over many edges ej

tg. In particular it is required that
the path constructed by the edges ej

tg connects the
resources where the tasks tk and tl are bound to.

�

�

Communication Aware Optimization of the Task Binding in Hardware/Software Reconfigurable Networks
Streichert, Strengert, Koch, Haubelt & Teich

32 Journal Integrated Circuits and Systems 2007; v.2 / n.1:29-36

DEFINITION 7 (BINDING RESTRICTIONS). Sensor
tasks ti

s � Ts may only be bound onto sensor nodes si � S.
Controller tasks ti

c � Tc may be bound onto all compu-
tational nodes cj � C. Actuator tasks ti

a � Ta may only
be bound onto actuator nodes ai � A.

Note that additional binding restrictions may
occur during the hardware/software partitioning
process due to the attributes annotated to edges or
nodes in the graphs Gtg and Gsca.

B. Problem Statement

Online hardware/software partitioning aims at
binding tasks to free hardware or software resources at
runtime. Typically, the hardware/software partition-
ing is executed during the design phase of an embed-
ded system. But since dynamic effects like node or link
defects as well as new arriving tasks corrupt an optimal
binding, it is inevitable to determine a new binding
online. Our approach to online hardware/software
partitioning consists of two main steps of which the
second step will be refined later on. In Figure 2, these
two steps are shown in an exemplifying scenario. The
presented network topology consists of four computa-
tional nodes c1,...,c4, a sensor s1 and an actuator a4.
The controller tasks t2

c, t3
care bound onto the compu-

tational nodes c1, c4, sensor task t1
s is bound onto sen-

sor s1 and actuator task t4
a is bound onto a4.

Additional to the tasks ti
c, replicas ti’

c are bound onto
the computational nodes c1, c2 � C. A requirement to
this replica binding is that a task ti

c and its replica ti’
c

must not be bound onto the same computational
node cj. Next, the computational node c1 fails in
Figure 2 and thus, all tasks bound onto this node are
lost. During the fast-repair phase, the replicated tasks
ti’

c become the main task ti
c and new routes for the

task-to-task communication have to be established.
Obviously, the tasks are sub-optimally bound after the
fast-repair phase which will be improved during the
optimization phase. The optimization phase tries to
find a binding of tasks ti

c to resources such that the
data traffic on the communication links is minimized
and constraints to the CPU utilization or the usage of
hardware resources, respectively, are not violated. In
order to tolerate another node defect, replicated tasks
ti’

c need to be created and bound onto the computa-
tional nodes cj.

3. ONLINE HARDWARE/SOFTWARE
PARTITIONING

As presented in Figure 3, the overall approach
to hardware/software partitioning consists mainly of
two phases. While the concepts and implementations
of the first phase (fast repair) have been described in
detail in [13], this paper concentrates on the second
phase (optimization). Several constraints exist to this
optimization phase:

• distributed computation: Due to fault-toler-
ance aspects, the binding of tasks has to be
determined in a distributed manner at the
computational nodes.

Figure 2. Four cases of a network: 1.) normal operation, 2.) after
a node defect, 3.) after reestablishing communication and switch-
ing to replicated tasks, and 4.) after an optimization phase.

Figure 3. During the fast repair phase, the replicated tasks take
over the control and the communication between two tasks will be
reestablished. The optimization phase optimizes the binding of
tasks and creates new replicas.

Communication Aware Optimization of the Task Binding in Hardware/Software Reconfigurable Networks
Streichert, Strengert, Koch, Haubelt & Teich

33Journal Integrated Circuits and Systems 2007; v.2 / n.1:29-36

• load definition: No suitable equivalent to
CPU utilization exists for the computation of
hardware utilization in, e.g. FPGA-based
architectures (ref. to Sec. 2).

• data traffic: Communicating tasks produce a
certain amount of data that has to be trans-
ferred over links between the nodes.
Therefore, a requirement to the algorithm is
the optimization of traffic in the network

• local knowledge: Gathering of data to obtain
global knowledge about the network is time
consuming and produces communication
overhead. Thus, it is desired to optimize the
binding with limited information.

The next section shows how our approach fulfils
these constraints by determining improvement values on
each task and migrating tasks according to these values.

A. Task Binding

The proposed methodology for determining an
optimal binding is based on three improvement val-
ues: a) a communication improvement that tries to
cumulate functionality with data dependencies, b) a
migration improvement which reduces the overhead
caused by the task migrations, and c) a partitioning
improvement that tries to implement a task according
to its favorite implementation style.

Communication improvement: The commu-
nication improvement Ii,j

com is defined as the improve-
ment for task ti

c if it is migrated from node cm over
port pj to a neighboring computational node (j ≠ 0):

deg(ci) �T�

Ii,j
com = � � Ti,k

. rk,l (1)
l=0 k=1

with

_ 1 : if traffic Ti,k is routed over pl withe l ≠ j
rk,l = 1 : if traffic Ti,k is routed over pl

The outer sum adds deg(ci) + 1 terms because
not only the traffic over the ports of the nodes but
also the node internal traffic needs to be considered.
Considering Figure 4 as an exemplifying binding
where the communication improvement I1,3

com for
migrating task t1

c over port p3 should be computed, we
will obtain the following:
I1,3

com = –80–20+10+100.
Afterwards, the communication improvement

Ii,j
com has to be normalized. For this normalization, the

maximal absolute value of Ii,j
com of all tasks ti

c will be
computed if migrated over a certain port pj:

Imax
com = max �Ii,j

com� (2)
�ti

c at cm , �pj � P

Migration improvement: For the determina-
tion of the migration improvement Ii

mig, the size Mi of
the bit-stream and binary of task ti

c which needs to be
migrated is required.

Then, the migration improvement for migrat-
ing task ti

c over a port pj is simply defined as:

Ii
mig = Mi (3)

Note that this is not really an improvement of
the task binding. It just avoids transferring huge data
entities over the communication channels in the net-
work. Again the improvement Ii

mig needs to be nor-
malized:

Imax
mig = max �Ii

mig� (4)
�ti

c at cm

Partitioning improvement: The partitioning
improvement Ii,j

par is required for optimizing the
implementation style (hardware/software) of a task
ti

c. For certain applications, e.g., video stream pro-
cessing, it might be desirable to implement a task in
hardware while alternatively, a state-machine might be
efficiently executed in software. However, assuming
that each task ti

c has a favorite implementation style, a
likelihood value li � � with 0 ≤ li ≤ 1 will be defined
at design time. The decision whether a task is better
implemented in hardware or software can be taken
based on resource utilization or a quality of service.
The resulting improvement Ii,j

par will be defined as:

Ii,j
par = li

. qi, j (5)

�

Figure 4. Two tasks t1
c, t2

c at a computational node are shown.
The inter task communication is denoted with directed edges
to/from the ports or between t1

c and t2
c. Annotated to each edge

is the traffic between two tasks.

Communication Aware Optimization of the Task Binding in Hardware/Software Reconfigurable Networks
Streichert, Strengert, Koch, Haubelt & Teich

34 Journal Integrated Circuits and Systems 2007; v.2 / n.1:29-36

with

1 : if ti
c was implemented in its – favo – rite

style and can be implemented in its
favorite style after migration over pj

qi, j = – 1 : if ti
c was implemented in its favorite style

and can only be implemented in its non
– favorite style after migration over pj

0 : else

The resulting improvement li, j for migrating a
task ti

c over port pj to a neighboring computational
node is:

Ii,j
com Ii,j

mig

Ii, j = ––––– – –––––– + Ii,j
par (6)

Imax
com Imax

mig

As shown in Figure 5, this improvement will be
determined for all migratable tasks ti

c � Tm � T and all
ports pj of node cm. After calculating the improvement
values for the migratable tasks, negative improvement
values might be in the list and can impair the current
binding. Therefore, two possibilities exist, a) to
remove all negative improvement values or b) to allow
for negative improvement values depending on the
migration count mci of task ti

c. In the next step, the
algorithm selects the task ti

c with the highest improve-
ment value Ii, j and asks the neighboring computation-
al node at port pj if the task can be scheduled on the
CPU or bound onto the reconfigurable hardware
device, respectively (see Figure 5). If enough
resources are available for scheduling/placing the
task, the task will be migrated and all improvement
values will be deleted. Otherwise, only the improve-
ment value Ii, j for the considered port pj and task ti

c

will be deleted. These two steps of selecting the task
with the highest improvement value and trying to
migrate it, is repeated locally until no improvement
value Ii, j remains. Note that the set of migratable tasks
Tm contains only tasks with a migration counter less
than a certain limit: mci ≤ mclimit. The counter mci is
incremented after each migration of task ti

c and reset
after a node or link defect. With this constraint, the
algorithm will terminate by preventing an alternating
behavior. All in all, our methodology runs asynchro-
nously in the network, i.e., there are no periodic
migration rounds. Since the routing needs to be fixed
before calculating the improvement values of the tasks
on a node, it is not possible to migrate tasks on dif-
ferent nodes simultaneously. Therefore, a token will
be placed onto an arbitrary node. If a node or link
defect occurs, the node with the token will start with
the calculation of improvement values and migrates a
task to a neighboring node. Along with this migrated
task a token will be transferred and the node which

receives the token may start the calculation of
improvement values. If the node will not migrate a
task, the token will be passed to an arbitrary neigh-
boring node. This strategy is derived from the class of
hill climbing algorithms, where optimization runs are
repeatedly started from arbitrary initial points. The
algorithm stops after the token has been transferred a
certain number of times.

4. RESULTS

In this section a detailed evaluation of our con-
tribution is given. The objectives of the two phases in
Figure 3 are diverse:

While the fast repair phase aims at reestablish-
ing the functionality, the optimization phase targets at
improving the binding of tasks to network nodes.

Evaluation of the Fast Repair Phase: We
implemented our approach to distributed online hard-
ware/software partitioning on a network of four
reconfigurable FPGA-based boards incorporating a
RISC-CPU and additional logic for implementing

�

Figure 5. The flow diagram shows the complete process of bind-
ing optimization that will be locally determined on each computa-
tional node in the network.

Communication Aware Optimization of the Task Binding in Hardware/Software Reconfigurable Networks
Streichert, Strengert, Koch, Haubelt & Teich

35Journal Integrated Circuits and Systems 2007; v.2 / n.1:29-36

hardware. The operating system microC-OS II [14]
has been extended such that node and link defects are
automatically detected [15]. Additionally, a task man-
ager has been designed and implemented which gath-
ers information about the task binding and locally
decides where to bind the tasks. This decision will be
taken by our approach to online hardware/software
partitioning.

On top of this network infrastructure, a driver
assistance application has been implemented. With the
help of pattern recognition algorithms, the application
tracks the lane and in case of an unintended lane
change, the assistant sets off an acoustic warning. The
entire driver assistant runs on the network in a dis-
tributed manner. Thus, if one node fails, the tasks
have to be dynamically reassigned to free resources in
the network. With this implementation, we deter-
mined the worst case repair times of the fast repair
phase for network topologies with varying diameter.

In the first case, the time for determining new
routes after a node or link defect is evaluated. The
experimental results as presented in Figure 6 show
that the rerouting time increases linearly with the net-
work diameter and about 0.89ms are required in aver-
age for each hop. If a task is not accessible any more a
replica needs to be activated and the information
about this activation has to be distributed to the other
nodes in the network. In Figure 7, the time for acti-
vating a replica and distributing the information is
presented. The activation of replicas takes about 4ms
in our implementation and afterwards the information
is broadcasted which depends linearly on the network
diameter.

Evaluation of the Optimization Phase: For a
detailed evaluation of our approach to online hard-
ware/software partitioning, we implemented a
behavioral model of the previously described net-
work, too. This model has been supplied with nine
different scenarios where each scenario consists of a
sensor-controller-actuator-chain and a network
topology. Three different scenarios were created with
40 tasks and 10 computational nodes. The next three
scenarios had 80 tasks and 20 nodes and the last three
scenarios had 200 tasks and 50 nodes. Our distrib-
uted approach started from an arbitrary initial bind-
ing of tasks onto computational nodes. For each sce-
nario, 10 initial bindings were determined such that
in total 90 test cases were examined. Starting with an
arbitrary binding of the tasks onto the computation-
al nodes of the network topology, the algorithm tries
to improve the binding by migrating functionality
between the hardware and software resources in the
network. After each migration step, we determine the
overall traffic T in the network and the fraction of
tasks which are executed in their non-favorite imple-
mentation style N:

�Esca��Etg� � i=1

�T{sca}� ni
T = � � Ti,j

. bi,j
traffic , N = –––––––– (7)

l=1 k=1 �T{sca}�

with

ni =
1: if ti

{s,c,a} is implemented in its non – favorite style
0 : else

We compared the solutions si = (T,N), si � S of
each optimization run with a hardware/software par-
titioning algorithm based on Evolutionary Algorithms
(EA) [16] that incorporates global knowledge. Note
that our algorithm tries to optimize the binding only
with local knowledge. The EA-based approach, in
contrast determines a reference set REA of so-called
Pareto-optimal solutions (T,N) = rEA � REA. The mini-
mal normalized distance d(s) between each s � S and
REA is then calculated as follows:

�sT – rT� �sN – rN� �
d (s) = min –––––––––– + –––––––––– (8)

rEA � REA rT
max – rT

min rN
max – rN

min �

where a smaller distance indicates a better solution.
For each locally determined solution s � S, we

computed the distance d(s) to the reference set REA

with the Pareto-optimal solutions. The distance
between the Pareto- front determined by the EA-based

Figure 6. Time for determining new routes after a link defect in
dependency of the network diameter. Vertical bars indicate the
standard deviation.

Figure 7. Time for activating a replica and distributing the infor-
mation about this activation to other nodes.

�

� ��
––––––––––––––––––––––––

Communication Aware Optimization of the Task Binding in Hardware/Software Reconfigurable Networks
Streichert, Strengert, Koch, Haubelt & Teich

36 Journal Integrated Circuits and Systems 2007; v.2 / n.1:29-36

approach and the solution s after each task migration is
shown in Figure 8 and denotes how close the solutions
found by the proposed algorithm converged towards
the reference solutions. Each plot in Figure 8 repre-
sents one test case with either 40 Tasks/10 Nodes, 80
Tasks/20 Nodes or 200 Tasks/50 Nodes. Due to the
migration counter, the smaller test cases terminate ear-
lier than the bigger test cases, but it can be clearly seen
that our methodology improves the initial partitioning
and approaches a global optima. In Figure 9, the two
objectives (traffic T and percentage of suboptimally
implemented tasks N) after each task migration are
shown. For these plots, we normalized the traffic by
dividing by the maximal traffic of each optimization
run. Interestingly, our algorithm is able to reduce the
traffic T by at least 20%.

Additionally, the number of suboptimally
implemented tasks N which has been about 50% at the
beginning has been reduced to 25% in average.

CONCLUSIONS

Online hardware/software partitioning aims at
binding functionality onto free resources at run-time.
While other approaches solved this partitioning prob-
lem offline or just assign software tasks dynamically to
network nodes, our approach solves the partitioning
problem at run-time. Moreover, it runs in a distrib-
uted manner, requires only local knowledge and
respects various resource limitations on the nodes.
While assigning functionality to nodes, our algorithm
successfully minimizes the congestion in the network.

All in all, we presented an online hardware/
software partitioning approach for FPGA-based or
general reconfigurable networks.

ACKNOWLEDGEMENTS

This work was supported in part by the
German Science Foundation (DFG) under project
Te/163-ReCoNets.

REFERENCES

[1] T. Blickle, J, Teich, L. Thiele, “System-Level Synthesis Using
Evolutionary Algorithms”, Design Automation for Embedded
Systems, Kluwer Academic Publishers, Boston, 3, pp. 23-62,
1998.

[2] V. Kianzad, S.S. Bhattacharyya, “CHARMED: A Multi-
Objective Co-Synthesis Framework for Multi-Mode
Embedded Systems”, Proc. of the 15th IEEE Int. Conf. on
Application-Specific Systems, Architectures and Processors
(ASAP’04), Galveston, U.S.A., pp. 28-40, 2004.

[3] M. López-Vallejo, J.C. López, “On the Hardware-Software
Partitioning Problem: System Modeling and Partitioning
Techniques”, ACM Transactions on Design Automation of
Electronic Systems, 8(3):269-297, 2003.

[4] F. Meyer auf der Heide, B. Oesterdiekho_, R.
Wanka,“Strongly adaptive token distribution”, Algorithmica,
15:413-427, 1996.

[5] D. Peleg, E. Upfal, “The token distribution problem”, ORSA
Journal on Computing, 18:229-243, 1989.

[6] J. E. Boillat, “Load balancing and poisson equation in a
graph”, Concurrency: Practice and Experience, 2:289-313,
1990.

[7] G. Cybenko, “Dynamic Load Balancing for Distributed
Memory Multiprocessors”, Journal of Parallel and Distributed
Computing, 7:279-301, 1989.

[8] J. Aspens, M. Herlihy, N. Shavit, “Counting Networks”,
Journal of ACM, 41:1020-1048, 1994.

[9] R. Lysecky, F. Vahid, “A Configurable Logic Architecture for
Dynamic Hardware/Software Partitioning”, Proc. of the con-
ference on Design, automation and test in Europe (DATE’04),
pp. 480-485, 2004.

[10]G. Sitt, R. Lysecky, F. Vahid, “Dynamic Hardware/Software
Partitioning: A First Approach”, Proceedings of Design
Automation Conference 2003, Anaheim, California, 2003.

[11]T. Streichert, C. Haubelt, J. Teich, “Distributed HW/SW-
Partitioning for Embedded Reconfigurable Systems”, In Proc.
of Design, Automation and Test in Europe (DATE’05),
Munich, Germany, 2005.

[12]T. Streichert, C. Haubelt, J. Teich, “Online Hardware/Software
Partitioning in Networked Embedded Systems”, In Proc. of
Asia and South Pacific Design, Automation and Test
Conference (ASP-DAC’05), Shanghai, China, pp. 982-985,
2005.

[13]D. Koch, T. Streichert, S. Dittrich, C. Strengert, C. Haubelt, J.
Teich, “An Operating System Infrastructure for Fault-Tolerant
Reconfigurable Networks”, In Proc. of Architecture of
Computing Systems (ARCS’06), Frankfurt (Main), Germany,
2006.

[14]“microC-OS II”, http://www.micrium.com/.
[15]“ReCoNets-Demonstrator”, www.reconets.de.
[16]C. Haubelt, “Automatic Model-Based Design Space

Exploration for Embedded Systems – A System Level
Approach”, Univ. of Erlangen-Nuremberg, Germany, Dr.
Köster, Berlin, ISBN 3-89574-572-3, 2005.

Figure 8. Distance and its standard deviation between the
Pareto-optimal partitions determined by an EA and the online
partitioner over time (number of task migrations).

Figure 9. Normalized traffic and percentage of suboptimally
bound tasks over time (number of task migrations).

