Mapping of Massive Data Processing Systems to

Design Space Exploration

FPGA Computers Based on Temporal Partitioning and

Paulo Sérgio Brandao do Nascimento!2, Stelita M. da Silval, Jordana L. Seixas',
Remy E. Sant'’Anna'.2, Manoel E. de Lima

1 Centro de Informatica — UFPE — Caixa Postal 7851 Cidade Universitaria,
Fone +55 81 2126.8430 Fax: +55 81 2126.8438 Recife — PE — Brazil

CEP: 50740-740 Fone: +55 81 2125.1716 Recife — PE — Brazil
e-mail: {psbn, sms, jls, res, mel}@cin.ufpe.br

ABSTRACT

High parallelism degree is fundamental for high speed massive data processing systems. Modern
FPGA devices can provide such parallelism plus flexibility. However, these devices are still limited by
their logic block size, memory size, memory bandwidth and configuration time. Temporal partitioning
techniques can be a solution for such problems when FPGAs are used to implement large systems.
In this case, the system is split into partitions (called contexts), multiplexed in a FPGA, by using
reconfiguration techniques. This approach can increase the effective area for system implementation,
allowing increase of parallelism in each task that composes the application. However, the necessary
reconfiguration time between contexts can cause performance decrease. A possible solution for this
is an intensive parallelism exploration of massive data application to compensate for this overhead
and improve global performance. This is true for modern FPGA with relatively high reconfiguration
speed. In this work, A reconfigurable computer platform and design space exploration techniques are
proposed for mapping of such massive data applications, as image processing, in FPGA devices,
depending on the application task scheduling. A library with different hardware implementation for a
different parallelism degree is used for better adjustment of space/time for each task. Experiments
demonstrate the efficiency of this approach when compared to the optimal mapping reached by
exhaustive timing search in the complete design space exploration. A design flow is shown based on
library components that implements typical tasks used in the domain of applications.

Index Terms: FPGA-Computers, Massive Processing, Temporal Partitioning, Design Space

2 Centro Federal de Educagéo Tecnoldgica de Pernambuco — CEFET-PE, Av. Prof. Luiz Freire — 500, Cidade Universitaria,

Exploration, Area-Time Trade-offs.

1. INTRODUCTION

Massive data applications, as image analyses or
high precise numeric model simulations, in general,
require a high performance computation approach
[1][3][4][10]. Therefore, architectures to face such
kind of problems should be able to provide such
resources and its intrinsic parallelism. Nowadays,
reconfigurable devices like powerful Field
Programmable Gate Arrays (FPGA) [2], appear as a
good possible solution for such high speed kind of
problem. However, FPGAs are also limited by their
logic resources, memory size and bandwidth, that
define amount of data that can be read and processed
simultaneously. The focus in this work is applications
composed of massive data tasks as image tasks, vector-
radix-fft, convolution, digital filters, median filter,
image edge detection, morphologic transformations

Journal Integrated Circuits and Systems 2007; v.2 / n.1:45-54

(erosion, dilation) and others tasks used in the large
numeric data structure analyzer systems [11].

The approach considers that a given application
is composed of a set of dependent tasks A={Tsk;,
Tsk,,...,Tsky} represented by a dataflow (DFG). For
cach task Tsk; a set of possible RTL implementation
I_se(Tsk;) is associated. These sets constitute a library
used in the design. These sets are generated by hard-
ware design experts with high level synthesis tools [9].
As depicted in Figure 1, each I se#(Tsk;) represents

I Set(Tsk)
I . I -

Area

Pareto Curve

Execution Time

Figure 1. Design space of each task: Area x Time pareto curve.

45

Mapping of Massive Data Processing Systems to FPGA Computers Based on Temporal Partitioning and Design Space Exploration

Nascimento, Silva, Seixas, Sant‘Anna & Lima

the Areax Time design space of tasks, where each task
implementation is one point in the pareto curve [12].

By definition, each point in the pareto curve is
the best solution, relative each other points, in at least
one parameter (area or time) while being at least the
same in the other parameter [12]. In this approach, if
the designer generates a solution that it is not on the
pareto curve, its implementation is discarded.

An application A can be split into temporal par-
titions II = {7;, @,,..., g}, where each partition &, C
A. These partitions, or contexts, are sequentially exe-
cuted by a FPGA temporal multiplexing mechanism
based on hardware reconfiguration [5]. This multi-
plexing mechanism, also called hardware virtualization
or multi-context, is useful when a given FPGA area is
not enough to support the total application logic. The
increase in effective area generated by the temporary
partitioning allows the use of optimal execution time
implementation of each task on pareto curves, because
these implementations need more area for parallelism
increase (Figure 1). In spite of additional reconfigura-
tion time overhead, appropriate number of contexts
and appropriate choice of task implementations can
improve the global performance of the application.
The two main problems are: how to define the tem-
poral partitioning mapping and to choose the best
task implementation, from components in the library,
that guarantee the required performance of an appli-
cation.

These problems are closely related. A heuristic
to simultaneous resolution of these problems is sug-
gested in function of FPGA area constraint and the
application execution time constraint.

The next section presents the reconfigurable
platform architecture proposed in this work. Section 3
presents related works. The heuristic design flow is
presented in details in Section 4. In Section 5 experi-
mental results are discussed. Finally, Section 6 pres-
ents conclusions and future works.

2. RECONFIGURABLE PLATFORM
ARCHITECTURE

The platform architecture is depicted in Figure 2.
The platform host is based on Nios II Soft-Core
System in a Stratix FPGA architecture, from Altera,
running uCLinux operating system [6].

The host is responsible for all system manage-
ment, context reconfiguration, tasks execution and
input and output of data in the applications. In the
Stratix board a compact flash card is used to keep the
context configurations. Data and configurations are
manipulated in the host as wCLinux OS files. This
allows the use of standard OS services for the platform
software control (ReconfSw).

46

‘SW Task
ReconfSW clk
uLinux OS g:n o Scheduller *Done
g FSM
Nios System Q (-
Stratix FPGA { :k.
Input ports -m Output ports
Selec Tsk Data (-
Map Ctrl Com
AN £ A
} I: L‘ A—2| Memory
4 2 1 \, > Bank 0
i I
Mem Port 0
e Memory Access "
b, A n| Memory
Partially Reconfigurable (Mem Port 1 Controller ;: Y Benk1
Logic 1 (ASIC) NV
Vitex NFpGA [emPort2 :
:—. (_‘ Memory
E(cm Port N {) X
\—v Bank M

Figure 2. Platform architecture and task interface.

The tasks are implemented in a second FPGA, a
Virtex-1I Xilinx device [7]. This FPGA provides recon-
figurable resources for tasks. Two ports allow the com-
munication between the Virtex-1I and Nios II System:
The SelectMap allows the programming of contexts in
the Virtex-II. A command sent to T5kCtrl allows the
resetting of all tasks in the FPGA and the starting of
context execution. After context completion, a Done
signal, in the TskCtrl port, is sent to Nios II System.
This signal calls the ReconfSW for scheduling the new
context. The Virtex-II FPGA is only used for task
implementations, with a small additional glue logic.

Massive data applications needs high band-
width memory systems [8]. In our architecture, the
high I/0 pin density of Virtex II FPGA is used for
implementation of multi-access memory structure.
For example the Virtex II XC2V2000[7] device has
two million gates for task implementations and
around 600 I1/0 pins, allowing the group of FPGA
pins in at least 10 memory ports of 24M Address x
16Bits each. These ports are called Mem Ports (0 to N)
in Figure 2 allowing N+I simultaneous read/write
memory access in each context.

The communication between tasks are per-
formed in the shared memory system and controlled
by the Memory Access Controller. This is a high speed
circuit that connects the Mem Ports of FPGA to sev-
eral SRAM banks (Bank 0 to Bank M in Figure 2).
One special port connected to host system
(DataCom) allows the input and output of data in the
memory array. This controller receives the access req-
uisitions from FPGA tasks or host and responds to all
accesses in only one system clock cycle (Clk). For this
action a high speed connection is necessary between
controller and memory banks. This connection is per-
formed with a high speed clock called memory clock
(MClk), which is several times bigger than the system
clock (Clk). The typical internal structure of memory
access controllers are discussed in [8]. Because the

Journal Integrated Circuits and Systems 2007; v.2 / n.1:45-54

Mapping of Massive Data Processing Systems to FPGA Computers Based on Temporal Partitioning and Design Space Exploration

Nascimento, Silva, Seixas, Sant‘Anna & Lima

Run Done_Context

e

Start Done Start Done Start Done Start Done
Tsky Tsky Tsks Tsky
Rst——wRst Rst Rst Rst
Clk—{Clk Clk Clk Clk
[Mem Port 1}]
[Mem Port 2]]
Mem Port 3[o]

Figure 3. DFG application graph and FPGA task mapping.

memory access is performed during the task execu-
tion, the task communication time is included in the
execution time of each task.

Figure 3 depicts a typical application DEG
graph and the mapping of an application in one FPGA
context. The DFG edges represent communication
between tasks or data input/output and mapping in
the memory system. The signals Start and Done of
cach task are combined in the glue logic according to
dataflow in the DFG. These signals define the sched-
uling of tasks in each context. The Run signal from
Ts5kCerl starts the context execution (7sk; and Tsk,)
and Done_Context signals the context completion
(end of Tsky in the example in Figure 3) to Nios II
host system.

The input and output ports of tasks are mapped
to Mem Ports of FPGA. An arbiter, small glue logic,
controls the access to the memories in case of simul-
taneous Task Port requests to same Mem Port in the
FPGA. Each task port is composed of the following
signals: Address, Data, RA, WnR, W, nReq. The RA
is the request access signal. WnR defines the type of
memory request: read or write. W is the wait signal,
the bus arbitration uses this signal for ordering access
to the Mem Port buses.

The nReq is generated when bus arbitration has
pending requests. #Regq blocks new task port requests
while pending requests to remain in the Mem Port bus.

3. RELATED WORKS

Many works on reconfigurable computers have
been described in literature. These works are in gen-
eral classified into three classes: I-gate level partition-
ing; II-operation level partitioning and III-task level
partitioning [5]. The gate level partitioning splits the
application into subsets of gates. This is an adequate
method for special devices with high reconfiguration
speed (few clock cycles or micro-clock cycles) as
multi-context FPGAs. Operation level partitioning is a

Journal Integrated Circuits and Systems 2007; v.2 / n.1:45-54

very frequent approach where partitions are generated
by grouping operand nodes from a DFG representa-
tion. In this approach, it is possible to consider the
parallelism loop exploration and functional unit reuse
in the same partitioning because of sequential execu-
tion of operands in the DFG. The classes I and II have
two major problems: first these approaches are strong-
ly related to the logic synthesis and high level synthe-
sis with high granularity (gate and operation levels).
Therefore, for high complexity applications the tem-
poral partitioning procedure becomes very hard and
there are several difficulties for hardware estimations
during partitioning phase. The second problem is the
difficulty for reuse of pre-synthesized tasks (from the
library components). This reuse is fundamental for
reduction of design effort and time-to-market in com-
plex applications. Therefore, the task level partitioning
is a way to task level reuse.

Several works in the task level partitioning and
examples of image processing are found in literature:
Vemuri et al. [13] proposes a task level partitioning
method based on integer linear program (ILP)[14].
In this method the temporal partitioning and the
selection of task implementation from library compo-
nent is modeled by a set of binary variables {y,,,}. The
Yepm=1 means that task #is mapping in the partitioning
p with implementation . If application has N, tasks,
cach task has Ny, implementations and there is N,
partitions, then the number of variables is Ny, =
Ngex Ny Neyy For example, if Ny, =17, Ny, =5
and Ng,, =3 then Ny,, = 255. The ILP problem is
composed of several equations (in the variables y,,,,)
that represent the temporal partitioning rules,
resource limitations and application constraints. The
problem of this approach is the high number of vari-
ables and equations that compose the ILP problem.
Thus, for complex applications, the computational
cost of ILP solution becomes very high.

Ouni et al., in [15], presents a method based on
local search for temporal partitioning improvement.
Ouni considers a library with several implementations
for each task that constitutes the application. The par-
titions are generated by task grouping, from the appli-
cation DFG. The smaller area (slower) implementation
of each task is used in the initial partitioning. After par-
titioning, the execution time is calculated. The critical
time partition is found and the worst task in terms of
latency in the critical path has its implementation
changed to the immediately faster implementation in
the library. With the new implementation of the worst
task, a new partitioning is generated. If the new one
presents performance improvement then this proce-
dure is repeated until that the there is no more increase
in performance. The disadvantage of this approach is
that after changing the task implementation a complete
new partitioning procedure is performed. Therefore,

47

Mapping of Massive Data Processing Systems to FPGA Computers Based on Temporal Partitioning and Design Space Exploration

Nascimento, Silva, Seixas, Sant‘Anna & Lima

complex applications demand large partitioning times.
Ouni reports partitioning times around 12 hours for
applications with approximately 40 tasks.

Quinn et al. in [16] presents an automatic
methods of component assignment for image process-
ing pipeline in reconfigurable computers. Quinn sug-
gests the use of hw/sw implementation library and
three algorithms based on exhaustive search, local
search and ILP. However, the application is limited to
sequential tasks and each task has only one hardware
and one software implementation. Another interesting
work is presented in [17]. This work presents a code-
sign methodology for the UltraSONIC reconfigurable
computer. This platform is designed for real-time
video applications and a temporal partitioning and
scheduling allows the mapping of tasks for hardware
or software implementation. These tasks are executed
under the control of a software task manager in the
host processor, similar to our platform architecture.
The limit in this approach is that only one implemen-
tation for each serial task in the FPGA is analyzed.

Finally the work presented in [18] proposes a
temporal partitioning methodology that allows design
space exploration generated by flexibility of task imple-
mentation. This methodology takes into account
mathematical models for the AreaxTime relationship
for each task. The models and local search strategies
are used to accelerate the choice of the best task imple-
mentation in the partitioning. This is a very interesting
approach; however, the tasks in the applications are
limited to sequential task flows and tasks with image
processing algorithms based on windows of pixels.

4. DESIGN FLOW AND ALGORITHM
DESCRIPTION

Our heuristic is based on hardware reuse para-
digm (core library) and task level partitioning, where
hardware synthesis and task design exploration are
performed by hardware designers. Thus, the applica-
tion experts can concentrate on choice of tasks as
black-boxes, in a “lego design style”. The proposed
mapping of applications in the reconfigurable plat-
form follows the design flow shown in Figure 4. The
application is specified as a DFG graph where each
node represents one task and the edges represent the
data flow between tasks. The behavior of each task is
a C or a SystemC code. Alternatively, the designer can
use common application domain tasks stored in the
component library.

For design space exploration of individual tasks,
the use of high level synthesis tools is proposed. In
this particular work, the Cynthesizer tool from Forte
Design Company has been used [9].

This tool allows the translation of SystemC

48

-\ppllcatlon DFG

@@

Ss stemC code

of each task node

Tempm al Partitioning
And
Task Implementation Choice

e

MultiContext Implementation

Cynthesizer_HLS
Design Space
Exploration

1_Set(Tsk) Pareto Curve

E Implementations

RTL implementation set of each task

li\uculi.nn Time [

Figure 4. Proposed design flow.

behavior to several RTL implementations for a given
target FPGA. The Cynthesizer allows the designer to
explore the synthesis process by specification of sever-
al synthesis strategies from minimum area implemen-
tation to maximum speed implementation.

Cynthesizer allows a quick exploration of multi-
ple algorithms and architectures to achieve a given set
I_Set(Tsk) of execution times and area requirements
for each task in the application. These implementation
points are plotted in the pareto curves (Figure 1).

After that, the designer should evaluate and
define the necessary number of temporal partitions for
optimal time implementations. The designer should
choose (from pareto curves) the best combination of
task implementations that result in a optimal perform-
ance for each context partition that fit inside the
FPGA area.

The increase in the number of partitions can be
used to increase the available area, allowing the use of
high speed task implementations. However, an exces-
sive number of partitions results in performance degra-
dation because of reconfiguration time overhead.

In this work an automatic temporal partitioning
and task implementations choice algorithm is proposed.
The Figure 5 shows the algorithm to find a good solu-
tion automatically, thus reducing the design effort.

A.The Temporal Partitioning Algorithm

The algorithm starts by generation of an initial
partitioning. This partitioning groups task Tsk; € A
into successive &, partitions in ASAP order of the
tasks. If the area of m, reaches the limit of the FPGA
area Appg4 then a new partition m@,,; is created for
grouping the remaining tasks. In this initial partition-
ing each task Tsk; is implemented with small area and
small performance found in the pareto curve of imple-

Journal Integrated Circuits and Systems 2007; v.2 / n.1:45-54

Mapping of Massive Data Processing Systems to FPGA Computers Based on Temporal Partitioning and Design Space Exploration

Nascimento, Silva, Seixas, Sant‘Anna & Lima

m Generates the possible
initial Partitioning Modifications m¢the Partitioning
Area Distribution Area Distribution for all

modifications

!

Choose the Best Modification

Figure 5. Automatic temporal partitioning algorithm.

mentation sets I_Set(Tsk;), therefore a minimal num-
ber K of contexts is generated.

After initial partitioning, the Area Distribution
procedure is applied. This procedure chooses the best
implementations of tasks in each context (from pareto
curve) that produces the most performance increase.
This procedure improves the distribution of FPGA
resources among tasks by changing used implemen-
tations. The main goal is the minimization of execu-
tion time of each context. After this procedure, the
execution time of all application T}, (including the
reconfiguration time) is compared with the time con-
straint TC. If TC is not reached the next algorithm
steps are used for partitioning improvement.

The modifications in the partitioning can be
provided in two ways, as shown in Figure 6: 1- move
tasks between partitions; 2- create new empty parti-
tions (New CTX) and move task to it.

Moving tasks can allow best use of FPGA area
because this move creates an area in the original con-
text and the moved task can use waste areas in the des-
tination context for performance increase.

The creation of new contexts increase the eftec-
tive area available for tasks and can improve the glob-
al performance. However, there is a supreme limit for
the number of partitions (see Figure 6). This limit is
given by the difference between the time constraint
and minimal critical path time possible in the applica-
tion DFG. This difference represents the maximum
time available for context reconfiguration. Therefore,
the limit is given by this difference divided by recon-
figuration time Tg,. Evidently, another limit is the
number of tasks Ny, in the application.

The number of partitioning modifications = 4 (N, -1) + 2

Nra
The limit of the number of contexts = min{(TC -_Z; min_tp;)/ Tpee Nrod
i=

Figure 6. Modification of current partitioning.

Journal Integrated Circuits and Systems 2007; v.2 / n.1:45-54

In the algorithm of Figure 5 all possible mod-
ifications of current partitioning are generated and the
Area Distribution procedure is applied to each new
partitioning for choice of the best implementation of
cach task. After, the algorithm chooses the new parti-
tioning, with the best execution time, from new cur-
rent partitioning set.

An important observation is that the algorithm
chooses the best time partitioning from new parti-
tioning set, but this new partitioning can have poor
performance in comparison to the previous one. This
feature avoids possible local minimal during the parti-
tioning search.

If a new partitioning reaches the time con-
straint TC, the temporal partitioning finishes with a
good solution.

Two additional stop criteria for the algorithm are
necessary: 1- The limit of number of contexts is reached
or 2- A new temporal partitioning is not possible.

The temporal partitioning algorithm imple-
ments a local search method depicted in Figure 7.

Each dot in the search graph represents a tem-
poral partitioning and the algorithm explores the
best solutions in a direct way. A list of points visited
is generated to avoid cyclical paths in the search,
climinating multiple visits to the same points.
However, visited points list is emptied if the new cur-
rent point in the search is generated by the addition
of one new context (in the current partitioning). In
this case, it is impossible that the algorithm reach a
previously visited point. Therefore, in this case the
list can be discarded. This reduces the memory used
in the algorithm.

Despite the exponential complexity of total
design space, the computational cost of our method
is limited because of two aspects: 1- The granularity
of task level partitioning used is coarse. This limits
the number of objects in the partitioning; 2- The
search strategies prunes the design space avoiding
poor solutions. This reduces the size of the explored
regions.

Our temporal partitioning includes the best
task implementation choice called Area Distribution
procedure. The efficiency of this procedure is fun-
damental for global efficiency of temporal partition-
ing. The next section describes this procedure in
details.

New Context

New List of visited points

A J
List of visited boints

Figure 7. Local search given by temporal partitioning algorithm.

49

Mapping of Massive Data Processing Systems to FPGA Computers Based on Temporal Partitioning and Design Space Exploration

Nascimento, Silva, Seixas, Sant‘Anna & Lima

B. Area Distribution Procedure

The heart of the temporal partitioning pro-
posed in this work is the Area Distribution
Procedure. This procedure defines the best combina-
tion of task implementations for optimal execution
time of each context. This procedure is responsible
for the efficient utilization of FPGA resources and
fundamental for generation of good partitioning. In
Figure 8 the algorithm proposed for this procedure
is depicted.

This procedure is applied to each context in
each new partitioning generated in the algorithm of
Figure 5. The algorithm starts with an initial solution
for task implementations and the loop in Figure 8
refines this by changing the task implementation.

If the context has wasted resources (7, =
Apgpga) then the algorithm chooses the best task for
area increase that results in the Dbest performance
improvement.

However, if context area is larger than FPGA
limit (7%, > Agpga), then the algorithm chooses the
best task for implementation of area reduction that
results in a reduced performance impact (smaller
increase in the execution time). The loop is repeated
until changes in the task implementations become
impossible or area constraint reached. In each loop
interaction, only one task implementation is modified
and the task change results in the choice of next or
previous task implementation in the pareto curve
(Figure 1) that is relative to the current task imple-
mentation.

If Area Distribution procedure returns a con-
text implementation with area superior to the FPGA
area (m, > Agppga), then the partitioning that contains
this context is considered invalid. In the other case,

Start (P ¢ For each Context =,

Initial
Solution
Choice the best
task Implementations

Area n<A_ o Choose the best

T|dp, for Increasing
F

Choose the best Best dp,

is Possible

dp, for Decreasing

Figure 8. Area Distribution Algorithm.

50

the solution is considered a good context implemen-
tation. The computational cost of this procedure is
given by the number Ny,,,(Tsk) of implementations
for each task Tsk in the library. The superior limit
LNjy,,,., for the number of loops for needed interac-
tions of the Distribution Algorithms is given by:

LNInter :\-ITskZe HNImpl(TSk)

Therefore, the convergence of the algorithm to
a final solution is guaranteed.

The final question in the description of the
Avrea Distribution Procedure is the choice of an initial
solution in the first step of the algorithm. In our
approach, the procedure is executed and evaluated for
three initial solutions. The best solution used for each
context is the best one of the three solutions generat-
ed. The procedure is repeated for three initial solu-
tions in order to avoid possible local minimal solu-
tions. These initial solutions are the following;:

1-Large Area Initial Solution (LAIS): Initial
solution with the biggest area implementation for all
tasks;

2-Small Area Initial Solution (SAIS): Initial
solution with the smallest area implementation for all
tasks;

3-Optimized Initial Solution (OIS): Initial solu-
tion generated by optimization method [14].

The LAIS and SAIS are very direct solutions
given by the selection of extreme implementations in
the pareto curve in Figure 1. However, the generation
of OIS is more complex. The OIS is given by the fol-
lowing steps:

1-Lineavization of parveto curve. A linear
approximation of the implementation curve (pareto
curve) is generated for each task in the application. An
example of this approximation is depicted in Figure 9

The linear approximation is represented by the
equation f(T) = a + T where f(T) is the implementa-

AreaxTime Curve f(T)

40
7 +13
. *25\ -‘\15_\‘
*

13 4382 s je

x-;,a*m*q,ad |
0 100 200 300
ms

<+ |mplementagfes — Aprox Linear
—&— Erro Aprox.

Figure 9. The linear approximation of pareto curve of task.

Journal Integrated Circuits and Systems 2007; v.2 / n.1:45-54

Mapping of Massive Data Processing Systems to FPGA Computers Based on Temporal Partitioning and Design Space Exploration

Nascimento, Silva, Seixas, Sant‘Anna & Lima

tion area in equivalent gates (Keg) and T'is the execu-
tion time of implementation in milliseconds (#ss). The
coefficients # and & are given by the quadratic error
minimization. For each task Tsk one equation
Sra(Tr) 1s used for the characterization of tasks in the
components library.

2-The Optimization problem vesolution: For
cach task path Path; presents in the context &, one lin-
ear optimization problem LP is constructed. This LP
is composed of the equations:

Execution Time of Path:
ET,- > T
' VTsk € Path; TSk
Critical Path Definition:
V Path;= Path; > Tr, s ET;

VTsk € Path;

Area constraint.
2 frlTrw) < Appca

VTsk € n,

The LP problem finds the values T™,,i of
variables Ty, as real numbers that minimize ET; with
restrictions given by the above inequalities. This
problem is applied for each path Path; in the context
@, and the minimal time solution for the context is
given by:

Solution (m,)={T",,i N Tsk € m,} where ET;
= min {ET; N Path; € m,}

The solution above represents the execution
times TT%,; i for each task Tsk that minimizes the
execution time of context &, However, because the
LPis resolved in the continuous domain (Real field),
the times T™,,,,i do not correspond to the imple-
mentations present in the pareto curves. Therefore, an
adjustment is necessary for the choice of implementa-
tions in the pareto curve with execution time near to
the times of {TT*,; i}. The choice of implementation
Impl(Tsk) tor task Tsk in the pareto curve is given by
the following rule:

Choice Impl(Tsk) such that the execution time is
the neavest possible to time T™ ;i (given by the LP
problem). If two implementations ave equidistant of
TT 06, then the Impl(Tsk) with smaller execution
time implementation should be chosenV

The utility of OIS as initial solution, as
described above, is that this solution can be near the
globally optimal implementation points. Therefore,
the probability of the Area Distribution Procedure
reaches local minimal and poor solution is reduced. In
addition, the number of necessary interactions in the
algorithm is minimized.

Journal Integrated Circuits and Systems 2007; v.2 / n.1:45-54

Figure 10. The application graph for experiments.

In this work, the solution of the LP is generat-
ed by optimization toolbox of the MatLab [19]. The
Temporal Partitioning algorithm with Area
Distribution Procedure is implemented as a Maltlab
program and executed in the Matlab environment.
However, the speed of partitioning can be increased
by its translation to C code.

In the next section, experimental results using
synthetic application graphs area presented. The
results demonstrate the quality of our approach.

5. EXPERIMENTAL RESULTS

For the validation of our approach the algo-
rithms depicted in Section 4 are applied to synthetics
task graph shown in the Figure 10.

Each task (71 to T17) has five possible imple-
mentations in each Area_Time_Set (ATS) as presented
in Table 1 below (see definition of ATS_ s sets in last
line of table). Each set of values in the ATS_ i is used
in an experimental evaluation of our approach.

These experiments use three sub-graphs
DFG_1, DFG_2and DFG_3 (see Table 2) from graph
in Figure 10. Therefore, 9 experiments had been exe-
cuted as indicated in Table IT below.

The DFG of Figure 10 and values in the Table 1
are generated by hand and they represent typical
topologies of real applications and typical implemen-
tation of tasks. The sets ATS i, 1=1,2,3 present differ-
ences of dispersion of area and time values between
the tasks.

These differences allow the representation of
several possibilities in the real world cases. In the next
sections the results of Area Distribution algorithm
and one case of Temporal Partitioning is analyzed in
detail

A. Area Distribution Results

The Area Distribution Algorithm described in
the Section 4B was applied in the experiments of
Table 2. In each case the DFG was mapped for only
one context. Several reconfigurable areas for the con-
text have been considered in the range of minimal area
necessary for implementation of DFG (with smaller

51

Mapping of Massive Data Processing Systems to FPGA Computers Based on Temporal Partitioning and Design Space Exploration

Nascimento, Silva, Seixas, Sant‘Anna & Lima

Table I. Implementations of tasks used in the our experiments (synthetic example)

Implementations (Area in Kequivalent gates and Time in miliseconds)

Tasks: Imp 1 Imp 2 Imp 3 Imp 4 Imp 5
Area Time Area Time Area Time Area Time Area Time
T1: 5/5/5 20/20/20 9/9/9 14/14/14 12/12/12 10/10/10 15/15/15 8/8/8 1717117 7717
T2: 71717 250/25/25 10/10/10 200/20/20 15/15/15 150/15/15 25/25/25 100/10/10 33/33/33 80/8/8
T3: 3/3/3 125/125/125 71717 100/100/100 12/12/12 70/70/70 1717117 50/50/50 20/20/20 45/45/45
T4: 30/30/30 450/45/45 40/40/40 300/30/30 70/70/70 180/18/18 100/100/100 140/14/14 125/125/125 120/12/12
T5: 18/18/18 230/23/23 25/25/25 200/20/20 50/50/50 160/16/16 90/90/90 150/15/15 110/110/110 80/8/8
T6: 27/27/27 270/27/27 50/50/50 200/20/20 80/80/80 130/13/13 100/100/100 105/10/10 120/120/120 96/9/9
T7: 80/80/8 260/26/26 160/160/16 130/13/13 250/250/25 90/9/9 330/330/33 60/6/6 400/400/40 40/4/4
T8: 56/56/5 105/10/10 120/120/12 90/9/9 200/200/20 70/7/7 230/230/23 50/5/5 300/300/30 45/4/4
T9: 150/150/15 500/50/50 300/300/30 260/26/26 400/400/40 190/19/19 500/500/50 130/13/13 670/670/67 90/9/9
T10: 80/80/8 250/25/25 100/100/10 200/20/20 120/120/12 180/18/18 200/200/20 105/10/10 250/250/25 90/9/9
T11: 20/20/20 30/30/30 40/40/40 16/16/16 65/65/65 10/10/10 90/90/90 8/8/8 105/105/105 7/7/7
T12: 500/500/50 100/10/10 600/600/60 80/8/8 730/730/73 73/7/7 840/840/84 62/6/6 900/900/90 51/5/5
T13: 450/450/45 60/60/60 700/700/70 50/50/50 800/800/80 45/45/45 850/850/85 40/40/40 960/960/96 36/36/36
T14; 5/5/5 15/15/15 20/20/20 8/8/8 35/35/35 5/5/5 57/57/57 4/4/4 75/75/75 3/3/3
T15: 37/37/37 10/10/10 49/49/49 8/8/8 60/60/60 6/6/6 65/65/65 5/5/5 70/70/70 4/4/4
T16: 100/100/10 8/8/8 200/200/20 4/4/4 250/250/25 3/3/3 300/300/30 2/2/2 370/370/37 111
T17: 70/70/7 24/24/24 140/140/14 12/12/12 180/180/18 10/10/10 200/200/20 9/9/9 250/250/25 777

ATS Definition: value_1/Value_2/Value_3 in each cell of table means that value_i is used in the Area_Time_Set number i (ATS_i) with i=1,2,3.

Table Il. Set of executed experiments

Used Subgraphs:
DFG_1={T1,T2,T3,T4,T5,T6,T7,T8,T9, T10, T11, T12,
T13,T14,T15,T16,T17}

DFG_2 = {T1,T2,T3,T4,T5,76,T7,T8,T9}

DFG_3 ={T9,T10,T11,T12,T13,T14,T15,T16,T17}

Experiment: Used SubGraph: Used ATS:
Exp_1: DFG_1 ATS_1
Exp_2: DFG_1 ATS_2
Exp_3: DFG_1 ATS_3
Exp_4: DFG_2 ATS_1
Exp_5: DFG_2 ATS_2
Exp_6: DFG_2 ATS_3
Exp_7: DFG_3 ATS_1
Exp_8: DFG_3 ATS_2
Exp_9: DFG_3 ATS_ 3

area of each task given by Impl 1 column in Table 1)
to the maximum area necessary for implementation
of DFG (with greater area of each task in the Impl 5
column of Table 1). The results shown in the Table
3 are compared with results generated by exhaustive
search for best solution in the complete design space
for subgraphs DFG_2 and DFG_3 (Exp_4to Exp_9in
Table 2).

In the exhaustive search all possible combina-
tions of task implementations are analyzed and the
globally optimal solution with the best execution time
(E in Table 3) is selected. Because of very large size of
design space for the experiments Exp I, Exp 2,
Exp_3, in order of 57 = 7.63 x 10!! points, the
exhaustive search was not performed. For experiments
Exp_4 to Exp_ 9 the size of design space is 57 =
1953125 points. In this case exhaustive search C pro-
gram consummates ~11 seconds in the platform

52

Celeron M - 1.3GHz
WindowsXP-2002.

The results for experiments Exp 4 to Exp_ 9
demonstrate that our approach generates solutions
(choice of implementations of tasks) very near global-
ly optimal solutions with average error E» < 3.5% and
maximum error around 13% in Table 3.

Figure 11 shows the number of loop interac-
tions for experiment Exp_1 in function of FPGA Area.

The number of interactions is very constant,
independently of FPGA size. The number of loop
interactions of algorithm (in Figure 8) necessary for
solution generations is smaller than 100 for all exper-
iments. This is a very fast convergence compared with
large size of design spaces. Therefore, our approach
for task implementation choice combines high preci-
sion and high speed in the solution generation. As
described in Section 4B the Area Distribution
Procedure is executed for three initial solution LAIS,
SAIS and OIS. The final solution is the best of three
possible solutions. Figure 12 shows the generated
solutions for each initial solution.

-256 MBytesRAM -

Number of Loop Interactions

0
1500 2000 2500 3000 3500 4000 4500 5000

FPGA Size (KEquivalentGates)

Figure 11. Number of loop interactions.

Journal Integrated Circuits and Systems 2007; v.2 / n.1:45-54

Mapping of Massive Data Processing Systems to FPGA Computers Based on Temporal Partitioning and Design Space Exploration

Nascimento, Silva, Seixas, Sant‘Anna & Lima

Table Ill. Experimental results of Area Distribution algorithm for experiments in the Table I

Used Symbols: T= Execution time results (milisecond); A= Several sizes of FPGA area (Kequivalente gates) for context implementa-
tion; E = represents the best execution time obtained by exhaustive search; Er= (T-E)/E represents the relative error of our algorithm,

m= Maximum values of error Er; a= Average values of Er

Exp_1 A-1638 A-1879 A-2121 A-2362 A-2603 A-2845 A-3086
T1529 T-1050 T-804 T-704 T-549 T-494 T-431
E-- E- - E- - E- - E- - E- - E- -
Exp.2 A-1638 A-1879 A-2121 A-2362 A-2603 A-2845 A-3086
T326 T200 T169 T159 T143 T134 T-126
E-- E-- E-- E-- E-- E-- E--
Exp_3 A-300 A-360 A-421 A-481 A542 A-602 A-662
T326 T201 T168 T-148 T132 T124 T-118
E-- E-- E-- E-- E-- E-- E--
Exp_4 A-376 A485 A594 A-704 A813 A922 A-1031
T1230 T-925 T715 T680 T-577 T575 T-465
E-1230 E-925 E-715 E-638 E-575 E-515 E-447
Exp.5 A-376 A-485 A-594 A-704 A-813 A-922 A-1031
T212 T116 T101 T90 T8 T78 T3
E-212 E-116 E-101 E-9 E-83 E-77 E-73
Exp_6 A-118 A-152 A-186 A-220 A255 A-289 A-323
T212 T113 T95 T8 T80 T73 T68
E212 E-113 E94 E85 E78 E71 E-68
Exp_7 A-1412 A-1584 A-1756 A-1929 A-2100 A-2273 A-2445
T799 T509 T-398 T272 T232 T208 T-200
E-799 E-509 E-398 E-272 E-231 E-207 E-197
Exp_8 A-1412 A-1584 A-1756 A-1929 A-2101 A-2273 A-2445
T164 T126 T104 T92 T8 T76 T67
E-164 E-126 E-104 E-92 E-87 E-76 E-67
Exp_ 9 A-197 A227 A257 A-288 A-318 A-348 A-378
T164 T125 T104 T91 T74 T66 T62
E-164 E-125 E-104 E-91 E-74 E-66 E-62

A-3327 A-3569 A-3810 A-4051 A-4292 A-4534 A-4775 Er:
T413 T899 T-399 T-399 T-399 T-399 T-399 -

E-- E- - E- - E- - E- - E- - E- -

A-3327 A-3569 A-3810 A-4051 A-4292 A-4534 A-4775 Er:
T120 TA17 T117 T117 T117 T117 0 T117 -

E-- E-- E-- E-- E-- E-- E--

A723 A783 A-844 A904 A964 A-1025 A-1085 Er:
™17 T117 117 117 117 T117 T17 -

E-- E-- E-- E-- E-- E-- E- -

A-1140 A-1249 A-1358 A-1468 A-1577 A-1686 A-1795 Er:
T450 T375 T30 T340 T-320 T-300 T-205 mi292%
E-395 E-370 E-347 [E-340 E-307 E-297 E-295 a3.35%
A-1140 A-1249 A-1358 A-1468 A-1577 A-1686 A-1795 Er:
T72 T68 T68 T67 T67 T67 T67 mi5%
E-71 E-68 E67 E-67 E-67 E-67 E-67 a0.2%
A-357 A-391 A-425 A-460 A-494 A-528 A562 Er:
T67 T67 T67 T67 T-67 T67 T67 m281%
E67 E-67 E67 E67 E-67 E67 E-67 a0.46%
A-2617 A-2789 A-2961 A-3133 A-3306 A-3478 A-3650 Er:
T194 T194 T194 T194 T194 T194 T194 m1.52%
E-194 E-194 E-194 E-194 E-194 E-194 E-194 a0.17%
A-2617 A2789 A-2961 A-3134 A-3306 A-3478 A-3650 Er:
T63 T59 T59 T59 T59 T59 T59 m2.63%
E-63 E59 E-59 E-59 E-59 E-59 E-59 a0.55%
A-409 A-439 A-469 A-499 A530 A560 A5 Er
T60 T59 T59 T59 T59 T59 T59 m1.69%
E-59 E-59 E-59 E-59 E-59 E-59 E-59 a0.12%

As shown in Figure 12 the best solution can be
generated by any of the three initial solutions. The
efficiency of each initial solution for generation of best
final solution is given in Table 4.

1600

LAIS SAIS OIS
1400 | \ 1/]

L

1200 + 1

1000 -

Execution time of Context (miliseconds)
5 [=>] W
2 =] =]

[~
o
o

oU
1500 2000

2500
FPGA Size (KEquivalentGates)

3000 3500 4000 4500 5000

Figue 12. Generated solution in function of initial solution.

Table IV. Efficiency of Initial Solutions for Area Distribution

Initial Generator of the Only generator
Solution: best solution: of the best solution:
Exp1to3 Exp4to9 Exp1to3 Exp 4to9
LAIS: 69.05% 81.25% 23.52% 22.73%
SAIS: 33.33% 58.33% 5.88% 4.55%
QOlS: 85.71% 83.33% 70.59% 72.73%

Journal Integrated Circuits and Systems 2007; v.2 / n.1:45-54

The first two column values in Table 4 show
the percentage of cases where each initial solution
results in the best final execution time. In this case
other initial solutions that results in the same execu-
tion time are possible. The last two columns repre-
sent the percentage of cases where each initial solu-
tion is the only initial solution that results in the
best execution time. These results demonstrate that
the most efficient initial solution is the OIS
(Optimized Initial Solution). However, the initial
solutions LAIS and SAIS are very important because
in 27.28% of the cases the best solutions are given
by these initial solutions. The combination of this
Area Distribution procedure for these three initial
solutions generates very good results: in 65.15% of
the cases the final result is precisely the global min-
imal time of execution time for each context and the
remaining 34.85% of cases result in small errors as
shown in Table 3.

The solution of LP problem for initial solu-
tion OIS is generated by the MatLab optimization
toolbox in some seconds and it represents small
computation time overhead in the Area Distribution
procedure.

The results presented in this section demon-
strate the efficiency of our approach for choice of
best task implementations in each context of tem-
poral partitioning. In the next section, the use of
these results in the temporal partitioning procedure
is shown.

53

Mapping of Massive Data Processing Systems to FPGA Computers Based on Temporal Partitioning and Design Space Exploration

Nascimento, Silva, Seixas, Sant‘Anna & Lima

B. An Example of Temporal Partitioning

The temporal partitioning procedure was
applied to the Fig. 10 graph with Area_Time_Set and
FPGA area of 820 Kequivalentes gates. The typical
reconfiguration time TRec = 16.4msec is considered.

The initial partitioning results in three contexts m;,
7, and w3 as follow: my={T1,12,T3,T4,T5,16,T7,T8,T9,
T10, T11,T14,T15}, m,= {T13,T17} and m3= {T12,T16}.

This results in the total reconfiguration time of
49.20ms and the total execution time of application is
1746.20ms. The application of Area Distribution pro-
cedure increases the performance of this initial parti-
tioning and the new execution time resultant of task
choice is 1157.20ms.

The main loop of temporal partitioning in Fig.
5 can improve this partitioning by changes in the par-
tition mapping of tasks. As example, some interactions
of the loop result in the following new partitioning;:
= {T1,T2,T3,T4,T5,T6,T7,T8,T9,T10},
m,= {T11,T13,T14,T15,T17} and m3= {T12,T16}

This new partitioning, after the application of
Avea Distribution Procedure, results in the execution
time of 1027.20ms. These results represent a per-
formance increase of (34%) and (11%) respectively.

Finally, let’s consider that the memory
resources are sufficient for context implementations.
In the next version of partitioning approach, a task
scheduler mechanism will be introduced to consider
the memory constraints.

6. CONCLUSIONS AND FUTURE WORKS

A reconfigurable computer architecture and
design flow have been presented for task implementa-
tion exploration in massive data processing applica-
tions. This design flow allows the reuse of tasks
implementations from a components library. This
reuse allows the reduction of design effort. The
methodology is based on an application model that
can be applied in applications composed of real world
tasks as FFT, DCT, Filters, Edge Detector, numeric
intensive simulations, etc and integrate high level syn-
thesis tools as, for example, Forte — Cynthesizer.

An efficient algorithm for design space explo-
ration of task implementations inside temporal parti-
tioning is presented and experiments have been
shown. The results demonstrate the viability and effi-
ciency of our approach.

Although the reconfiguration time can represent
one bottleneck, high speed implementation of tasks in
the massive data applications (possible with effective
area increase) can compensate for these reconfiguration
times and decrease the application execution time.

As future works, we intend to complete inte-
grations of platform and design flow environment, the

54

use of more complex and real applications and include
several application domains. The inclusion of memory
access scheduling in the DFG application for memory
constraint modeling is under development.

ACKNOWLEDGEMENTS

This research is partially supported by the
Brazil agencies: CNPq and FACEPE.

REFERENCES

[1] Bruce A. Draper, Ross Beveridge, A.P. Willem Béhm, Charles
Ross, and Monica Chawathe, “Accelerated image processing on
fpgas”, IEEE Transactions on Image Processing, no. 12, 2003.

[2] Compton, Katherine; Hauck ,Scott; “Reconfigurable Computing:
A Survey of Systems and Software”; ACM Computing Surveys,
Vol 34, No 2, pp. 171-210, June 2002.

[38] Rhett D. Hudson, David I. Lehn, Peter M. Athanas ,“A Run Time
Reconfigurable Engine for Image Interpolation”, Bradley
Department of Electrical and Computer Engineering Virginia
Tech, Blacksburg, Virginia.

[4] Camel Tanougast, Yves Berviller Serge Weber, Philippe Brunet,
“A Partitioning Methodology that Optimises the Area on
Reconfigurable Real-Time Embedded Systems”, EURASIP
Journal on Applied Signal Processing, pp 494-501, Hindawi
Publishing Corporation, 2003.

[5] Christian Plessl, Marco Platzner, “Virtualization of Hardware —
Introduction and Survey”, Computer Engineering & Networks
Lab- Swiss Federal Institute of Technology(ETH) Zurich,
Switzerland-2004.

[6] www.altera.com.

[7] www.xilinx.com.

[8] J.Corbal, R.Espasa, and M.Valero, “Command vector memory
systems: High performance at low cost”, In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, 1998.

[9] Forte Design System; “Cynthesizer User's Guide for Cynthesizer
2.4.0"; www.forteDS.com; March 14, 2005.

[10] Torresen, Jim; Bakker, Jorgen W.; Sekanina, Lukas; “Efficient
Image Filtering and Information Reduction in Reconfigurable
Logic”; Proceedings of Norchip04, 2004

[11]Clouard, Regis; et al.; “Borg: A Knowledge-Based System for
Automatic Generation of Image Processing Programs”, |IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol.
21, NO. 2, February 1999.

[12] Gries, Matthias; “Methods for Evaluating and Covering the
Design Space during Early Design Development”; Technical
Memorandum UCB/ERL MO03/32, CAD-Group, Electronics
Research Laboratory August 12, 2003.

[13] Vemuri, Ranga; Kaul, Meenakshi; “Temporal Partitioning
Combined with Space Exploration for Latency Minimization of
Run-Time Reconfigured Design”; DATE 1999.

[14] Pierre, Donald A.; “Optimization Theory with Applications”; Dover
Publications ,Inc.,New York 1986.

[15] Ouni, B.; Mtibaa, A.; Abid, M.; “Synthesis and Time Partitioning
for Reconfigurable Systems”; Design Automation for Embedded
System, 9, pp. 177-191, Springer — 2005.

[16] Quinn, Hearther; et.al; “Runtime Assignment of Reconfigurable
Hardware Components for Image Processing Pipelines”; 11t
Annual |IEEE Symposium on Field-Programmable Custom
Computing Machines FCCM-2003.

[17] Wiangtong, Theerayod; et. al.; “Hardware/Software Codesign — A
systematic approach targeting data-intensive applications”;
IEEE Signal Processing Magazine, May 2005.

[18] Nascimento, P. S. B.; Lima, M. E. ; “Temporal Partitioning for
Image Processing Based in Reconfigurable Architectures”;
DATEO06 — Design Automation and Test in Europe; 6-10 March,
Munich Germany 2006.

[19] http://www.mathworks.com.

Journal Integrated Circuits and Systems 2007; v.2 / n.1:45-54

