Design Space Exploration of High-Performance
Parallel Architectures

Enric Musoll and Mario Nemirovsky

ConSentry Networks, Inc., USA
email: enric@consentry.com

ABSTRACT

High-performance single-threaded processors achieve their performance goal partly by relying,
among other architectural techniques, on speculation and large on-chip caches. The hardware to
support these techniques is usually a large portion of the overall processor real state area, and
therefore it consumes a significant amount of power that sometimes is not optimally used toward
doing useful work. In this work, we study the intuitive fact that architectures with hardware support
for threads are more power efficient than a more traditional single-threaded superscalar architecture.
Toward this goal, we have created a model of the power, performance and area of several parallel
architectures. This model shows that a parallel architecture can be designed so that (a) it requires
less area and power (to reach the same performance), or (b) it achieves better power efficiency and
less area (for the same power budget), or (c) it has higher performance and better power efficiency
(for the same area constraint), when compared to a single-threaded superscalar architecture.

Index Terms: Parallel Architectures, Multi-core, Many-core, Processor Power Consumption

1. INTRODUCTION

At the architecture level, high-performance
processors have used several techniques to increase the
IPC. Several of these techniques (branch prediction,
value prediction) heavily rely on speculation, while
others (trace caches, out-of-order issue and execution,
on-chip L2 caches) rely on a large amount of on-chip
logic to obtain, in some scenarios, a small percentage
increase in performance. These techniques come at an
expense not only in design and verification time and
die area, but also at a sometimes high cost in power
dissipation.

Parallel architectures featuring either several
hardware-supported threads and/or processors, have
been used to extract more performance by exploiting
the thread-level parallelism of the application. The
more processors and threads the chip packs together,
the less complex these cores are, for the simple reason
that the chip area is limited. Intuitively the power budg-
et is better utilized toward performing useful work
rather than using it for speculative tasks. Traditional
parallel architectures are chip-multiprocessing [17] and
simultaneously multi-threading processors [7].

This intuition is more formally addressed in this
work as we tackle the question of whether it would be

32

better, from the power efficiency (ie power/perform-

ance) and power density (ie power/area) perspective,

to have a single, high IPC processor in a die, or to
have many of lower-IPC processors executing the
application. Will several (smaller, more power-effi-
cient) processors be better in terms of power and per-
formance (with area limitation) than a single, power-
hungry processor at a given area constraint?

Toward answering this question, the contribu-
tion of this work is twofold:

e first, the proposal of a high-level, first-order magni-
tude model that allows the comparison of three basic
metrics of a design (area, performance and average
power) for some architectures (multi-processor,
multi-threaded and clustered multi-threaded) that
exploit the thread-level parallelism of applications to
increase the overall performance. The parameters of
the model are explained and reasonable values are
obtained for these parameters based on both simula-
tions and reported values in the literature.

e second, the analysis of the results obtained by the
model comparing a superscalar with architectures
based on hardware multithreaded support. We take
on the challenging goal of exploring the power, area
and performance design space of heavily multi-
threaded architectures.

Journal Integrated Circuits and Systems 2008; v.3 / n.1:32-38

Design Space Exploration of High-Performance Parallel Architectures

Musoll & Nemirovsky

2. PREVIOUS WORK

Manne [12] and Musoll [16] have tackled the
reduction of useless power in a single, high-perform-
ance processor. The first work focus on reducing the
useless power due to speculative instructions that are
fetched by the processor but they are never commit-
ted. These instructions from the wrong path access
different blocks of the processor before they are
flushed out of the pipeline. The technique is based on
a confidence estimation of the prediction performed
by the branch prediction mechanism. The other work
tackles even the useless power dissipated by instruc-
tions of the correct path when accessing specific
power-hungry blocks, like for example the L2 cache.
These two works demonstrate that the amount of
speculative work in a high-performance processor
draws enough power to be an area of concern by
researches. As a consequence, recent multi-core archi-
tectures impose a design rule which states that any
increase in core area has to come with a proportional
increase in core performance (to maintain the power
efficiency of the core), otherwise the area increase
does not pay off [1].

One architecture that leverages the thread-level
parallelization of an application is Simultaneous
Multi-threading, or SMT [7]. Seng [18] has studied
ways to minimize the power consumption in these
architectures.

The two closest works to ours are [11,15]. In
[11], the authors explore the multi-dimensional
design space for chip multiprocessors, showing that in
these architecture, thermal constraints may force the
selection of simpler, lower-performance cores due to
their better power efficiency. In [15], the authors
investigate the performance, power and thermal char-
acteristics of multi-core architectures. The authors
also evaluate the effect that different floorplans have
on the temperature distribution.

In the previous two works, the number of cores
are limited to only 8 ([15]) and 20 ([11]). Our goal
is to evaluate multi-core architectures with a larger
number of (simpler) cores and therefore we have
developed a model based on empirical data obtained
from published research. We have tried to compile

Table I. Building blocks of a core.

Alias Name Alias Name
BPU Branch Pred. Unit SFA Simple FP ALU
IC1 L1 Instruction Cache CFA Complex FP ALU
ITL Instruction TLB LSU Load/Store Unit
DEU Decode/Dispatch Unit DC1 L1 Data Cache
WU Inst. Window Unit DC2 L2 Unified Cache
RFU Register File Unit DTL Data TLB
SIA Simple Integer ALU Cou Commit Unit

CIA Complex Integer ALU

Journal Integrated Circuits and Systems 2008; v.3 / n.1:32-38

these data in a coherent fashion toward building our
model, but the lack of data and/or the large differ-
ence in the underlying architecture framework that led
to the data has forced us to perform in some cases a
rough approximation. We believe though that the
study presented here is still a valid exercise toward the
goal of analyzing the power efficiency of parallel archi-
tectures.

3. NOMENCLATURE
In this work, we will use the following terms:

¢ high-TPC processor (H): a typical high-perform-
ance, single-threaded processor that relies heavily in
speculation, large caches, out of order issue, etc. to
obtain the required performance. A high-IPC
processor is the core of a super-scalar avchitecture
(SS).

low-IPC processor (L): processor core intended to
be replicated in a multi-processor. A low-1PC
processor is smaller in area than a high-IPC proces-
sor because several of them need to fit in about the
same chip real state as a single high-IPC processor.
The low-IPC processor is the base of a multi-proces-
sor architecture (MP).

stream (S): set of hardware resources dedicated to
run one of the software threads. A set of expensive
resources are shared among the different streams.
The streams are the main components of a multi-
threaded avchitecture (MT).

Figure 1 depicts the different architectures. We
will use the term core to refer to any of the above
modules. A core is built out of several blocks of logic
and/or memory circuitry. In this work, the blocks in
Table I will be used. By choosing these blocks, some
micro-architectural options have been already set (like
having only one level of TLBs or split instruction and
data first-level caches), but we believe that the block
breakdown shown is generic enough for the purpose
of this study.

All the shared blocks in the MT architecture
(shown in bold in Table I) will be a subset of the
blocks with the same characteristics as those in a low-
IPC processor in the MP architecture. This is not nec-
essarily a requirement since a MT chip may be
designed for example with a higher performance
fetching unit, larger caches and more functional units
to better support the various streams. However, in
this work it will be assumed that the blocks remain the
same, and thus the streams will pay the performance
penalty in terms of added latency to their operations.
Each of the streams contains the rest of the blocks of
a low-IPC processor that are not shared.

33

Design Space Exploration of High-Performance Parallel Architectures

Musoll & Nemirovsky

=
9]
&)

Frocessors

(113

Shaved

R I srul| it |LUTE
! REU(|IB[i ™
 [SFA ol i
1 i CEU
‘ S s DCA
i e SR LsSu oTL
\ ucz |
| e

Streams H

m |

TA] |

CRA| ||

OTL| |!

Ciusters i
uc2

| S— E—

L '

P -

Figure 1. Architectures: Single-stream (SS); Multi-processor
(MP); Multi-threaded (MT), and Clustered multi-threaded (CMT).

34

4. AREA, PERFORMANCE AND POWER MODEL

To compare the different architectures (SS, MD,
MT and CMT) we will use a high-level model of their
area, performance and power consumption. This model
is intended to be used at the first stage of the design of
a processor-based system. The model is parameterized,
and the results are given relative to the single-threaded
super-scalar architecture. The smallest block granularity
in terms of parameterization of the model is the stream,
ie the set of blocks that are replicated for each hard-
ware-supported thread in the MT architecture.

The model provides therefore relative estima-
tions of the area, performance and power consump-
tion, not absolute values. It is thus intended as a com-
parison tool only. The parameters of the model are
divided into three sections: (a) parameters that com-
pare the area, performance and power of a high-IPC
processor with a low-IPC processor, (b) parameters
that compare the same metrics between a low-IPC
processor and a stream, and (c) degradation factors in
MP, MT and CMT architectures due to the hardware
synchronization and resource sharing among the dif-
ferent processors/streams/clusters.
® High-IPC vs. Low-IPC parameters:

* A = AL/Ay: ratio between the area of a low-
IPC processor and a high-IPC processor.

e Wiy = Wi /Wy ratio between the average power
consumption of a low-IPC processor and a high-
IPC processor.

® P; = P /Py ratio between the performance of a
low-IPC processor and a high-IPC processor.
Performance is the product of the IPC of the
processor and its core frequency. In this work, all
the architectures are compared at the same fre-
quency, so IPC and performance are equivalent.

o Low-IPC vs. Stream parameters (s is the number of
streams in a MT on in a CMT cluster):

® Ag(5) = (Ag/A;) * Overhead_A(s): ratio between

the area of a stream and a low-IPC processor. A; is
the area of a low-IPC processor, and Ag is the area
of a single stream without any area overhead that
exists in a MT architecture or within a cluster in
CMT to support several sources/destinations
to/from the shared resources (namely, wider
muxes, more control logic and more routing area).
Overhead_A(s) is then > 1 for s> 1,and 1 for s= 1.
Wi (5) = (Ws /W) * Overhead_W(s): ratio between
the average power consumption of a stream and a
low-IPC processor. Wy is the power of a low-1PC
processor, and Wy is the power of a single stream
without any power overhead for the additional logic
required to support several streams. Overhead_W(s)
is always > 1 for s> 1,and 1 for s= 1.

Pg; = Pg /Py ratio between the performance of a
single stream and a low-IPC processor. This ratio

Journal Integrated Circuits and Systems 2008; v.3 / n.1:32-38

Design Space Exploration of High-Performance Parallel Architectures

Musoll & Nemirovsky

is always 1 because a single-stream processor is the
same as a low-IPC processor in this model. Of
course, the overall performance does not neces-
sarily scale linearly with the number of streams.
This performance degradation is accounted for in
the next set of parameters. We assume that the
application is fully parallelizable so no overhead
will be considered on the software side when the
application is parallelized.

o Performance Degradation pavameters: two sets of
performance degradation factors exist: (a) due to the
hardware synchronization of the different proces-
sors/streams /clusters, and (b) due to the sharing of
resources by the processors/streams/ clusters:
® Dsyncyp(p) : degradation in an MP/CMT archi-

tecture due to the synchronization among the p
processors/clusters. Dsyncyp(p) is always less or
equal than 1 for a given p; if the application run
by the cores were fully parallelizable requiring no
synchronization, this factor would be 1.

e Dshareyp(p) : degradation in an MP/CMT archi-
tecture due to the sharing of resources among the
p processors/clusters (for example, when several
processors/clusters access an external memory
through a limited number of memory ports).
Dshareyp(p) is always less or equal than 1, being
1 for the case when no resource sharing occurs.

® Dsyncyr(s) : degradation in a MT architecture
due to the synchronization among the s streams.
Dsyncyr(s) is always less or equan thanl.

® Dshareyp(s) : degradation in a MT architecture due
to the sharing of resources among the s streams.
Dshareyr(s) less or equal than 1; Dsharey(s) can
theoretically be 1 in the case that the shared blocks
where poorly architected in the low-IPC processor
and were underutilized (thus having headroom for
several streams to fully utilize them).

The expressions for the performance degrada-
tion parameters will be derived later on.

The model then provides comparisons relative
to the SS architecture.

Table Il. High-IPC and Low-IPC core configurations.

Parameter High-IPC Low-IPC
Branch Prediction
Direction Combined, Bimodal Always not taken
Predictor 4K table, 2-lev 1K
table, 10-bit hist,
4K chooser
BTB 1024-entry, 2-way N/A
RAS 32 entries 8 entries
Mispred. penalty 7 cycles 5 cycles
Memory Hierarchy
L1 Data Cache 64KB, 2-way (LRU), 8KB, 2-way

32B line, 1 cycle
lat., 4 ports

(LRU), 32B line,
1 cycle lat., 1 port

L1 Inst. Cache 64KB, 2-way (LRU),
32B line, 1 cycle

lat., 1 port

8KB, 2-way
(LRU), 32B line,
1 cycle lat., 1 port

Journal Integrated Circuits and Systems 2008; v.3 / n.1:32-38

Low-IPC
256KB, 4-way
(LRU), 32B line,

Parameter
L2 Unified Cache

High-IPC
2MB, 4-way (LRU),
32B line, 12 cycle

lat., 1 port 2 cycle lat., 1 port
Memory latency 100 cycles 100 cycles
Inst. TLB 64-entry FA, 8-entry FA,
30-cycle miss lat. 30-cycle miss lat.
Execution
Inst. Window size 64 inst. 2 inst.
L/S queue size 32 inst. 2 inst.
Fetch queue size 8 inst. 2 inst.
Fetch width 4 inst./cycle 1 inst./cycle
Decode width 4 inst./cycle 1 inst./cycle
Issue width 4 inst./cycle 1 inst./cycle
Commit width 4 inst./cycle 1 inst./cycle
OO0 execution yes no
Integer ALUs 4 simple ALUs
1 complex mult/div 1 simple ALU
1 complex mult/div
FP ALUs 1 simple add, 1 simple add,
2 complex 1 complex
mult&div/sqrt mul&div/sqrt

5. METHODOLOGY

In this section, each of the parameters of the
model defined in the previous section is discussed in
more detail and a well-educated value for each of
them is obtained.

Once an estimation of the parameters is com-
pleted, the values will be plugged into the model and
the conclusions regarding the area, performance,
power, power efficiency and power density will be
drawn.

A. High-IPC vs. Low-IPC parameters

In this section the parameters of the model that
compare a high-IPC with a low-IPC processor are
studied. The parameters are (see Section 4) Ay =
AL/Ap, Wiy = W /Wy and Pry = P /Py

Table II shows the architectural configurations
used in this work for the high-IPC and low-IPCcores.
The high-IPC configuration roughly matches the
Alpha 21264 processor. The low-IPC configuration is
a scaled-down version of the high-IPC one.

e Area Ratio Ajy: The Chip-Space Estimator v1.0
[20] has been used to obtain, for each of the blocks
and for each of the cores, the percentage of the
block area with respect to the overall area. For the
high-IPC core, we have seen that almost all the core
area is used to implement the multi-ported L1 data
cache and the big unified L2 cache (UC2). For the
low-IPC configuration, the area is more equally dis-
tributed among the different blocks, but UC2 is still
the most expensive block. Regarding the ratio
between the low-IPC and high-IPC area, we have
observed that the main differences are in the caches
(because of the reduced size and single-ported L1
data cache in the low-IPC core), instruction win-
dow unit (because of the smaller number of entries,

35

Design Space Exploration of High-Performance Parallel Architectures

Musoll & Nemirovsky

reduced number of ports and in-order issue in the
low-IPC core) and branch predictor logic (because
the low-IPC processor implements the straightfor-
ward always-not-taken scheme). On the contrary,
no area difference occurs for the simple floating-
point ALUs and for the complex integer ALU
because both the high-IPC and low-IPC cores have
the same number of these units. The A;y ratio
based on these results is 0.123.

® Power Ratio Wy g: The Wattch v1.0 [3] extension
to the SimpleScalar simulator, running the integer
and floating-point SPEC workloads, has been used
to obtain the power numbers reported in this sec-
tion. We have obtained, for each block and for cach
core, the percentage of power of that block with
respect to the overall core. We have seen that for the
high-IPC core, the power goes mainly to the
caches, the multi-ported instruction window and
the clock distribution. For the low-IPC core, the
power goes mainly to the clock, the ALUs and the
caches. Moreover, for each block, the ratio between
the low-IPC and high-IPC power as been obtained.
As expected, all the blocks in the high-IPC core are
more power hungry than their low-IPC counter-
parts. In average the low-IPC core consumes about
17% of the high-IPC core. The W}y ratio will use
the average value of 0.171.

e Performance Ratio Pyy: The SimpleScalar Tool
Set v2.0 [4], running the integer and floating-point
SPEC workloads, has been used to gather the per-
formance numbers. We have obtained that the aver-
age across all the benchmarks draws a value of 0.210
for the Pj g parameter.

B. Low-IPC vs. Stream parameters

Here the parameters that compare a low-IPC
processor and a stream core are discussed. They are
(refer to Section 4): Ag; (s) = (Ag/Ay) * Overhead_A(s),
Wy (s) = (Ws/Wyp) * Overhead_W(s) and Pg; = Pg/P.
(always 1).

e Area Ratio Ag;(s): As it was shown in Table I, the
blocks that will be shared among the streams are:
BPU, ICl1, ITL, DEU, CIA, CFA, LSU, DCI,
UC2 and DTL, and the blocks that will be replicat-
ed for each of the streams are: IWU, RFU, SIA, SFA
and COU. The ratio of the shared area and the area
of a single stream, ie the Ag/A; ratio, is 0.054 based
of the results previously obtained. The Overhead_A(s)
depends on the number of streams in the MT archi-
tecture, and usually quadratically (since the over-
head takes the form of a cross-bar to interconnect
the streams to the shared resources). There is scarce
data in the literature to accurately model this
parameter. The floorplan area overhead reported in
[5] for an SMT architectures accounts for the area
of the streams themselves. From the layout

36

schematic in [8], it can be inferred that the area of
the central resource and address arbiters is less than
3% of the overall chip area in a CMP architecture
with four cores. Based on the work in [14] and
complemented with a private communication by the
same authors we conclude that an overhead of
10% of the overall chip area is needed in a MT
architecture with 32 streams. In this work we will
model the overhead based on this last data point as:
Overhead_A(s) = O_A* 2 + (1 - O_A). Fors=1
the overhead ratio is 1, ie no overhead; for s> 1, the
overhead ratio is proportional to the square of the
number of streams. The value for O_A is chosen so
that the resulting curve roughly approximates to the
empirical data reported in the previously mentioned
works. For 32 streams, it provides an overhead of
9.2%, and for 4 streams, an overhead of 1.3%.

e Power Ratio Wg; (s) : The ratio between the shared
power and the single stream power, ie the Wq/Wp
ratio, is derived based on the power results for the
low-IPC core obtained with the Wattch tool.
However, the power due to the clock distribution
needs also to be divided into the shared and stream
components since the Wattch tool does not break
down the clock power into the different blocks. We
do this by distributing the clock power into each of
the blocks at a rate that depends on the size of the
block; the larger the block is, it is expected to con-
sume more clock power. With this approximation of
the clock power per block, the Wy /W; ratio becomes
0.138. The Overhead_W(s) depends on the number
of streams in the MT architecture, and it is modeled
similarly as the area overhead in the previous section.
The Wy (s) ratio is then 0.273 * Overhead_W(s).

C. Performance Degradation parameters

Finally, the parameters that relate to the per-
formance degradation are analyzed. The four parame-
ters are (as explained in Section 4): Dsyncyp(p),
Dsharepp(p), Dsyncyer(s) and Dsharey;r(s).

In this work we will combine the MP degrada-
tion parameters into a single expression, and similarly
for the two MT degradation parameters. Therefore,
the two parameters will be:
® Dyip(p) = Dsyncyp(p) * Dshareyp(p) (applies also to

clusters)
® Dyr(8) = Dsyncyp(s) * Dshareypr(s)

Figure 2 shows several sets of data points for
different MT, MP and CMP architectures regarding
performance degradation obtained from different
sources: (1) [21], (2) [6], (3) [19], (4) [7], (5,6) [2],
(7) [9], (8,9) [13] and (10,11) [10]. As it can be
observed, the degradation varies among the different
data sets in part due to the different applications used
in each data point to derive the performance results.
We will model the MT and MP performance degrada-

Journal Integrated Circuits and Systems 2008; v.3 / n.1:32-38

Design Space Exploration of High-Performance Parallel Architectures

Musoll & Nemirovsky

Performance Degradation

02 - {10)

MT MP Degradation --------
4] | | 1 |
1 2 4 8 8 12 18

Cores

Figure 2. Performance degradation empirical data and model.

tion with the following equation:
Degradation = 1 / «1/4)

where 4 is a parameterized value that deter-
mines the degradation. Independently of 4, the degra-
dation is 1 (ie no degradation at all) when the number
of streams is 1, and it is high when the number of
streams is large. We will use a value 4 of 3 for our
model; Figure 2 shows the modeling curve.

6. RESULTS

Figure 3 shows the area, performance and
power metric comparisons of the MP, MT and CMT
architectures with respect to the SS architecture. The
power efficiency (power per unit of performance) and
power density (power per unit of area) metrics are also
shown. For the performance metric, the configura-
tions with better performance than the SS are those
above the 1.0 value; for the rest of the metrics, the
best configurations are below the 1.0 line. Some con-
clusions can be derived:

e MP:

e an MP with 6 or more cores will have higher power
dissipation than the single high-IPC core in SS.

e it takes about 8 cores or more to surpass the area
of the single high-IPC core, and about 9 cores to
beat the performance.

* power efficiency is worse in the MP for 2 or more
cores.

* power density is constant and worse than in SS.

e MT:

e MT favors the power and area, and maintains the
performance, with respect to the MP.

e the performance curve is the same as the MP one
because the performance degradation penalty is
the same for both MT and MP in this work.

* power efficiency is always better than the MP and
SS ones.

Journal Integrated Circuits and Systems 2008; v.3 / n.1:32-38

e power density is always worse than in MP and SS.
e CMT:

e power density remains the same as in MT.

e as the number of clusters increase, the number of
streams per cluster decrements to obtain better
area and power than in the SS. Similarly, the min-
imum number of streams per cluster to obtain the
same of better SS performance decreases.

e power efficiency is still better than SS for two and
four clusters (and for up to 128 and 256 streams
respectively).

Table III is a summary of the results: for each
bounded metric it shows the best architecture and its
configuration in terms of processors/streams/clus-
ters. The results in italics indicate that the equivalent
SS architecture would perform better.

In particular, a MT architecture with 32
streams uses 64% less area than a superscalar architec-
ture at the same power. With 2 clusters of 48 streams
the performance can be 4.4 times at the same area.
With 10 streams, the power can be reduced by as
much as 61% at the same performance level. The
power efficiency can be improved from 37% to 61%
depending on the bounded metric. The power densi-
ty metric, however, is always worse (higher) than the
SS one, being MP better than both MT and CMT.

7. CONCLUSIONS

In this work, we study the intuitive fact that
architectures with hardware support for threads are
more power efficient than a more traditional single-
threaded superscalar architecture. Our model of sever-
al parallel architectures shows that indeed these archi-
tectures outperform a single-threaded superscalar
architecture when the application allows paralleliza-
tion. In particular, a parallel architecture exists that (a)
requires less area and power (to reach the same per-
formance), or (b) achieves better power efficiency and
less area (for the same power budget), or (¢) has high-
er performance and better power efficiency (for the
same area constraint), when compared to a single-
threaded superscalar architecture.

Table Ill. Summary of the best MP, MT and CMP architectures
and configurations (p processors, s streams/cluster, c clusters).

Scenario Area Perf. Power
Conf Value Conf Value Conf Value

Area-bound - - 2c,48s 4.4 8p 1.37
Perf.-bound 1¢,10s 0.19 - - 1c,10s 0.39
Power-bound 1¢,32s 0.36 1c,34s 2.2 — —
Scenario Power/Perf. Power/Area
Conf Value Conf Value
Area-bound 3c,27s 0.63 8p 1.39
Perf.-bound 1c,11s 0.39 10p 1.39
Power-bound 1¢,32s 0.46 6p 1.39
37

Design Space Exploration of High-Performance Parallel Architectures

Musoll & Nemirovsky

4.0

3.0

20

0.0 1 1 1 1 1 L 1
1 8 16 24 32 40 48 56 64

Processors

SSvs. MT
4.0 T T T T T T

Streams

S8 vs. CMT (2 Clusters)

T

0.0 ! I I I I 1 1
1 8 16 24 32 40 48 56 84

Streams/cluster

S8 vs. CMT (4 Clusters)

1 8 16 24 32 40 48 56 84
Streams/cluster

Figure 3. SS vs MP, SS vs MT, and SS vs CMT for 2 and 4 clus-
ters (A area, P performance, W power, W/P power efficiency, W/A
power density)

38

REFERENCES

[1] A. Agarwal and M. Levy. The KILL rule for multicore. In
Proceedings of f the Design Automation Conference, June
2007

[2] L. Barroso and et al. Piranha: A scalable architecture based

on single chip multiprocessing. In ISCA'00, June 2000

D. Brooks, V. Tiwari and M. Martonosi. Wattch: a framework

for architectural-level power analysis and optimization. In

International Symposium on Computer Architecture, June

2000

D. Burger and T. Austin. The SimpleScalar Tool Set, Version

2.0. Technical Report, Computer Sciences Department, Univ.

of Wisconsin-Madison, June 1997

[5] J.Burns and J.-L. Gaudiot. SMT layout overhead and scala-

bility. IEEE Transactions on Parallel and Distributed Systems,

13(2), February 2002

P. Crowley, M. Fiuczynski, J. Baer and B. Bershad.

Characterizing processor architectures for programmable

network interfaces. In Proceedings of the International

Conference on Supercomputing, May 2000

S. Eggers, J. Elmer, H. Levy, J. Lo, R. Stamm and D. Tulsen.

Simultaneous multithreading: a platform for next-generation

processors. IEEE Micro, September 1997

[8] L.Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen and K.
Olukotun. The Stanford Hydra CMP. IEEE Micro, 2000

[9] S. Kapil. Gemini: a power-efficient chip multi-threaded (CMT)
UltraSPARC processor. Hot Chips XV, August 2003

[10]S.-W. Lee and J.-L. Gaudiot. Clustered microarchitecture
simultaneous multithreading. In Proceedings of the
International Conference on Parallel and Distributed
Computing, August 2003

[11]Y. Li, C. Li, D. Brooks, Z. Hu and K. Skadron. CMP design
space exploration subject to physical constraints. In
Proceedings of the International Symposium on High
Performance Computer Architecture, Februeary 2006

[12]S. Manne, A. Klauser and D. Grunwald. Pipeline Gating:
speculation control for energy reduction. In International
Symposium on Computer Architecture, June 1998

[13]D. Marr. HyperThreading technology in the Netburst microar-
chitecture. Hot Chips XIV, August 2002

[14]S. Melvin, M. Nemirovsky, E. Musoll, J. Huynh, R. Milito, H.
Urdaneta and K. Saraf. Network Processor Design: Issues
and Practices. Chapter: A Massively Multithreaded Packet
Processor. Morgan Kaufman, 2003

[15]M. Monchiero, R. Canal and A. Gonzalez. Design space
exploration for multicore architectures: A power/perform-
ance/thermal view. In Proceedings of the International
Conference on Supercomputing, 2006

[16]E, Musoll, Predicting the usefulness of a block result: a
microarchitectural technique for high-performance low-power
processors. In International Symposium on Microarchitecture,
November 1999

[17]K. Olukotun. The case for a single-chip multiprocessor. In
ASPLOS, October 1996

[18]J. Seng, D. Tullsen and G. Cai. Power-sensitive multithreaded
architecture. In Proceedings of the Internaltional Conference
on Computer Design, 2000

[19]U. Sigmund, M. Steinhouse and T. Ungerer. On performance,
transistor count and chip space assessment of multimedia-
enhanced simultaneous multithreaded processors. In
Workshop on Multi-threaded Execution, Architecture and
Compilation (MTEAC-4), December 2000

[20]M. Steinhaus, R. Kolla, J. Larriba, T. Ungerer and M. Valero.
Transistor count and chip-space estimation of simplescalar-
based microprocessor models. In Workshop on Complexity-
Effective Design, June 2001

[21]W. Yamamoto and M. Nemirovsky. Increasing superscalar
performance through multistreaming. In International
Conference on Parallel Architectures and Compilation
Techniques (PACT), June 1995

3

[4

6

4

Journal Integrated Circuits and Systems 2008; v.3 / n.1:32-38

