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1. INTRODUCTION

The rapid increase in computational power and
speed of integrated circuits is supported by the aggres-
sive size reduction of semiconductor devices.
Downscaling of MOSFETs as institutionalized by
Moore’s law is successfully continuing because of
innovative changes in the technological processes and
the introduction of new materials. The 32nm MOS-
FET process technology recently developed by Intel
[1] involves new hafnium-based high-k dielectric/
metal gates and represents a major change in the tech-
nological process since the invention of MOSFETs.
Although alternative channel materials with a mobili-
ty higher than in Si were already investigated [2, 3], it
is believed that strained Si will be the main channel
material for MOSFETs beyond the 45nm technology
node [3]. 

With scaling apparently approaching its funda-
mental limits, the semiconductor industry is facing crit-
ical challenges. New engineering solutions and innova-
tive techniques are required to improve CMOS device
performance. Strain-induced mobility enhancement is
the most attractive solution to increase the device speed
and will certainly take a key position among other tech-

nological changes for the next technology generations.
In addition, new device architectures based on multi-
gate structures with better electrostatic channel control
and reduced short channel effects will be developed. A
multi-gate MOSFET architecture is expected to be
introduced for the 22nm technology node. Combined
with a high-k dielectric/metal gate technology and
strain engineering, a multi-gate MOSFET appears to be
the ultimate device for high-speed operation with excel-
lent channel control, reduced leakage currents, and low
power budget. Confining carriers within thin Si films
reduces the channel dimension in transversal direction,
which further improves gate channel control. The quan-
tization energy in ultra-thin Si films may reach a (few)
hundred(s) meV. The parabolic band approximation
usually employed for subband structure calculations of
confined electrons in Si inversion layers becomes insuffi-
cient in ultra-thin Si films. A recent study of subband
energies and transport in (001) and (110) oriented thin
Si films reveals that even the non-parabolic isotropic dis-
persion is not sufficient to describe experimental data,
and a direction-dependent anisotropic non-parabolicity
must be introduced [4].

A comprehensive analysis of transport in multi-
gate MOSFETs under general stress conditions is
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required for understanding the enhancement of device
performance. Besides the biaxial stress obtained by
epitaxially growing silicon on a SiGe substrate, mo-
dern techniques allow the generation of large uniaxial
stress along the [110] channel. Stress in this direction
induces significant shear lattice distortion. The influ-
ence of the shear distortion on subband structure and
low-field mobility has not yet been carefully analyzed.

The two-band k·p model [5-8] provides a gen-
eral approach to compute the subband structure, in
particular the dependence of the electron effective
masses on shear strain. In case of a square potential
well with infinite walls, which is a good approximation
for the confining potential in ultra-thin Si films, the
subband structure can be obtained analytically [9].
This allows an analysis of subband energies, effective
masses, non-parabolicity and the low-field mobility on
film thickness for arbitrary stress conditions.

In the following we briefly review the main ideas
behind the two-band k·p model for a valley in the con-
duction band of Si. Then we shortly analyze the
unprimed subband structure in (001) ultra-thin Si films,
obtaining analytical dependences for the effective mass-
es and non-parabolicity parameter. With these parame-
ters the non-parabolic subband approximation for the
subband dispersions is constructed. The non-parabolic
subband dispersions is embedded into the subband
Monte Carlo code in order to enable the computation
of the low-filed mobility. Results of the mobility
enhancement calculations are finally analyzed.

2.CONDUCTION BAND IN SILICON

The subband structure in a confined system
must be based on accurate bulk bands of Si including
strain. Several options are available. The conduction
band dispersions computed with several methods in
[100] and [110] directions are compared in Fig.1.
The method based on non-local empirical pseudo-
potentials from [10] is the most accurate as compared
to DFT band structure results obtained with VASP
[11]. The sp3d5s* tight-binding model with parame-
ters from [12] does not reproduce the anisotropy of
the conduction band correctly. In addition, an accu-
rate calibration of the parameters of the sp3d5s* model
to describe the modification of the conduction band
in strained Si is still lacking. 

The k·p theory is a well established method to
describe the band structure analytically. As illustrated
in Fig.1, the k·p method reproduces the band struc-
ture accurately at energies below 0.5eV, which is
enough to describe the subband structure and trans-
port properties of advanced MOSFETs. From symme-
try consideration the two-band k·p Hamiltonian of a
[001] valley in the vicinity of the X point of the
Brillouin zone in Si must be in the form [6]:

where σy,z are the Pauli matrices, I is the 2x2
unity matrix, mt and ml are the transversal and the lon-
gitudinal effective masses, k0 = 0.15 x 2π/a is the posi-
tion of the valley minimum relative to the X point in
unstrained Si, εxy denotes the shear strain component,
M-1 ≈ m-1–m0

-1, and D=14eV is the shear strain defor-
mation potential [5-8]. The two-band Hamiltonian
results in the following dispersions [6]: 

where the negative sign corresponds to the
lowest conduction band,
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Figure 1. Comparison of bulk dispersion relations close at the
minimum of the [001] valleys of the conduction band in [100] and
[110] directions. DFT [11] and EPM [7,10] results are similar while
the sp3d5s* tight-binding model [12] underestimates anisotropy
significantly.

All moments as well as energies in (2) are
counted from the X-point of the Brillouin zone. The
classical parabolic approximation is obtained from (2),
when coupling between the two conduction bands
described by the parameter is neglected. Coupling
between the bands is small, when the wave vectors
|kx|, |ky| << k0 (M/ml)1/2 and shear strain εxy = 0 . Due
to band coupling the dispersion (2) becomes non-par-
abolic in strained Si, if the shear strain component is
non-zero, and/or at higher energies. 

In order to check the accuracy of (2) we have
carried out numerical band structure calculations with
the empirical pseudo-potential method (EPM) with
parameters from [7,10]. Excellent agreement between
the two-band k·p model (1) and the EPM results was

δ2 = Dεxy - h2kxky / M 2

2

(3)
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found up to energy 0.5eV. The relation (2) is valid in
a larger range of energies compared to parabolic dis-
persion with isotropic non-parabolic correction and
can be used to determine the subband structure in
thin Si films. 

3. SUBBAND EFFECTIVE MASSES

The subband energies can be found analytically
for an infinite square well potential which is a good
aproximation for an ultra-thin Si film. The dispersion
of the unprimed subbands in a [001] thin Si film of
thickness t is [9]: 

(6) is obtained after taking into account the
strain-induced valley minimum energy shift

and the dependence of the
longitudinal mass ml on strain [7, 8]:

Figure 2. Strain-modified subband effective mass (solid lines).
Strain dependence of the transversal mass in bulk silicon is
shown by dashed lines and symbols (results of pseudo-potential
calculations).

where qn = (πn)/(tk0) and  is the subband dispersion
for parabolic bands:

(4) is valid when 

(5)

Dispersion (4) describes the subband quantiza-
tion energy correction due to strain with respect to
the valley minimum:
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Figure 3. Subband dispersion (4) (solid) as compared to the pa-
rabolic approximation (dotted), for a strained film (εxy = 1%) of
thickness t=5.4nm. Spacing between lines is 10meV.

(4) also describes corrections to the transversal
mass mt due to strain εxy , to thickness t, and subband
number n:

Here mt
- is the effective mass along the direc-

tion [110] of tensile stress. In thin films the effective
mass depends not only on strain but also on film
thickness. (7) is compared to the corresponding
dependence in bulk silicon in Fig.2. The thickness
dependence of the last term in (7) leads to a more
pronounced anisotropy in the transversal mass than in
a bulk semiconductor. 

A comparison of the dispersion relation (4) to
the para bolic approximation with transversal masses
(7) for a strained film ( ) of thickness t=5.4nm
is shown in Fig.3. Deviations from the parabolic
approximation become large for electron energies
above 20meV. Therefore, to compute the carrier con-
centration and mobility in thin Si films the dispersion
relation (4) should be used instead of a parabolic
approximation at higher carrier concentrations.
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4. THE SUBBAND NON-PARABOLICITY

Taking into account the energy shift (6) and the
subband effective mass modifications (7) the subband
dispersion (4) close to the minimum is written as: 

Substituting (11) into (10) and assuming the
energy E is close to the valley minimum so that ,
we obtain the following expression for the non-parabo-
licity parameter ratio:

The non-parabolicity parameter depends on the
film thickness t via qn and strain η. We use (7) and
(12) in order to evaluate the low-field mobility in
FETs with ultra-thin Si films.

5. STRAIN INDUCED VALLEY SPLITTING

A weak coupling between the two valleys loca-
ted at around the X-point leading to a
so-called valley splitting [15] was neglected while
obtaining the subband dispersion relations (4). The
valley splitting or, more precisely, the splitting
between the two ladders of unprimed subbands reach-
es several meVs in strongly confined electron systems
of Si point contacts [16]. We investigate for the first
time how shear strain of arbitrary strength affects the
valley splitting.

For each energy E there are four solutions of
(2) for the wave vectors ki (i=1,..,4). The wave func-
tion is then a superposition of the solutions with the
four eigenvectors. In the two-bands model the wave

α η α

η

η

( , )t
q

m

M q

m

M q
n

t

n

t

n

=
−

+
−











−
−











0 2

2

2

2

2

1
1

1 2
1

1

1
1

1

 
E

m

M k q
m ml

n

= −
−

−( )− +

ζ
ϕ ϕ ζ

2 2

2
0
2 2

2 2 2 4

2 4 1
h

( )
cos sin

Figure 4. Subband quantization energies En from (2) (norma-
lized to the ground subband energy) for a film thickness of 6.5nm.
The valley splitting appears for non-zero shear strain η.

where and . The
last term in (8) is proportional to the fourth power of
the momentum and describes the subband non-para-
bolicity. We evaluate the dependence of the non-para-
bolicity parameter on strain η and film thickness
t by equating the density-of-states obtained from (8)
and from the phenomenological expression

In the bulk semiconductor a similar procedure
[11] yields e V-1 close to the phenomenologi-
cal value eV-1 routinely used in calculations.

The expression for the density-of-states can be
written in the form [12]

where is determined
by the expression:
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Figure 5. Mobility in a MOSFET with 3nm unstrained UTB film.
Due to thickness-dependent subband non-parabolicity the mobi-
lity is slightly decreased.
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function is a spinor with two components. The sub-
band quantization energies are obtained by equating
both components of the spinor at both interfaces to
zero. It results in a system of four linear homogeneous
equations for the coefficients in the linear combina-
tion. Non-zero solutions exist, when the following
equations are satisfied:

Interestingly, the equations (13) coincide with
the ones obtained from an auxiliary tight-binding
consideration [17]. The ratio in the right hand side
depends on the energy E, wave vector k1, and strain

. For zero stress the ratio is equal to
one, and the standard quantization condition

is recovered. This condition is obtained
from either of the two equations, therefore, the sub-
bands are two-fold degenerate. Shear strain opens the
gap between the two conduction bands at the X-point
making dispersions non-parabolic. Shear strain ren-
ders the equations (13) non-equivalent by removing
the subband degeneracy and introducing a valley split-
ting. The valley split is linear in strain for small shear
strain values and depends strongly on the film thick-
ness [7]:

For higher strain values (14) must be solved
numerically. Results of the numerical solutions of (13)
for valley splitting are shown in Fig.4. For high strain
values the dispersion of the lowest conduction bands
becomes parabolic again. The quantization levels in a
square well potential are therefore recovered in this
limit.
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6. SIMULATION METHOD AND RESULTS

A multi-subband Monte Carlo method designed
for small signal analysis [18] was used to evaluate the
mobility in MOSFETs with a thin Si film. The method
is based on the solution of the linearized multi-subband
Boltzmann equation and is exact in the limit of vanish-
ing driving fields. A particular advantage of the method
is that it includes degeneracy effects due to the Pauli
exclusion principle. Degeneracy effects are important
for mobility calculations in ultra-thin films, especially at
high carrier concentrations.

The multi-subband method requires the sub-
band wave functions and subband energies. They are
calculated by solving the Schrödinger and the Poisson
equations self-consistently, for each value of the gate
voltage. The wave functions are then used to evaluate
scattering rates. We include electron scattering with
phonons and due to surface roughness. The surface
roughness at the two thin film interfaces is assumed to
be equal and uncorrelated. We calibrate the parame-
ters of the Gaussian surface roughness correlation
function by reproducing the universal mobility curve
of Takagi [19] in the inversion layer. The same param-
eters are then used for mobility calculations in thin
film MOSFETs.

An increase of leads to an increase of scat-
tering, which results in a slight mobility decrease in a
thin film even without stress as shown in Fig.5. Shear
strain induces profound modifications in the subband
dispersion. First, the dispersion becomes anisotropic,
and the transversal mass develops two branches mt

+

and mt
-, shown in Fig.2. Due to the thickness-depend-

ent factor in (7), the strain-induced subband
mass anisotropy is larger than in the bulk. Surprisingly,
an even smaller subband transport mass in the tensile

Figure 6. Mobility in a 3nm unstrained (solid line) and with 0.5%
strain (diamonds) UTB FET. Squares are obtained with bulk
masses and non-parabolicity.
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Figure 7. Influence of strain-dependent non-parabolicity on mobil-
ity: dashed line denotes strain-independent non-parabolicity, open
and filled symbols are for 0.5% and 1% strain, respectively.
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stress direction does not result in a higher mobility
enhancement as shown in Fig.6. The reason is the
increase (12) of the subband non-parabolicity param-
eter with strain. This results in a higher density of
states and increased scattering with a stronger influ-
ence than the transport mass reduction at higher
strain, which leads to the mobility enhancement
decrease (Fig.7).

7. CONCLUSION

Mobility enhancement in strained MOSFETs
with ultra-thin silicon films is investigated. The sub-
band Monte Carlo method which includes the carriers
degeneracy is employed to solve the transport
Boltzmann equation. In transport calculations, the
subband effective masses and the subband non-para-
bolicity parameter obtained from a two-band k·p
model are used. The model describes the dependence
of the conductivity effective mass on strain and film
thickness. A decrease of the conductivity mass along
tensile stress in [110] direction of (001) thin silicon
film ensures the mobility enhancement in MOSFETs
even in extremely thin silicon films. The two-band k·p
model also describes the non-parabolicity parameter
dependence on film thickness and on strain. Inclusion
of an increase of the non-parablicity parameter with
decreasing film thickness results in a slight decrease of
mobility in unstrained films. Dependence of the non-
parabolicity parameter on strain also reduces the
mobility enhancement due to the strain-induced con-
ductivity mass decrease and may even overpower the
enhancement at higher strain values.
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