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1. INTRODUCTION

Analog design is present in most of the technolo-
gy used in modern applications. From sound amplifiers to
cell phones, they are responsible for interfacing the pro-
cessing capabilities of the digital domain with the real
signals existent in the world.

The demands of the microelectronics market and
the boundaries of the present technologies make the
design of analog integrated circuit a very challenging
research topic. While there are several knowledge fields
and techniques involved in developing analog designs
themselves, from device physics to noise considerations
and system analysis, this field is also constrained by mar-
ket demands, specially small time-to-market. The final
design has to meet several specifications (e.g., gain, unity
gain frequency, slew rate, power consumption, area...)
and also needs to be finished fast in order to save
resources and continue the product flow.

Despite of its several constraints and complexity,
there is still no structured design flow for analog design.
Therefore, the evolution of tools for this domain has been

much slower than in the digital domain and consequently
the analog section in mixed-signal projects is usually the
bottleneck in time required to be accomplished.

To address this problem, several approaches have
been proposed using design automation. They are mainly
divided in knowledge-based and optimization-based. The
initial studies in circuit level synthesis were mostly
knowledge-based approaches [1]. In optimization-based
approaches the problem is described in a form that can be
solved through numerical methods. This approach started
in the late 1980’s and it is where most of the research
focus is on the present [2],[3],[4]. Optimization-based
requires less preparatory time before synthesis and it is
also more flexible to serve to different analog blocks and
topologies.

The tools can also be classified by the way they
evaluate a new solution. Simulation-based evaluation
rather than equation-based evaluation was progressively
being adopted in order to reduce the preparatory effort
and to provide higher accuracy.

The optimization-based approach with simula-
tion-based evaluation is promising due to the increase in
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computer power and also to the advances made in the
optimization and computational intelligence field in
general. Due to the multi-objective nature of analog
synthesis problems, algorithms attempting to solve them
need to be multi-objective or to be able to convert all
objectives into one through an AOF (Aggregate
Objective Function). While the first option takes into
account the whole problem nature and has as a result the
Pareto set (best solutions) it also takes much more time
to be performed. The approach using AOF is usually
faster and uses less memory as it can discard most of the
solutions as it uses only one metric to compare them.
However, as it simplifies the nature of the problem, it
returns only one best solution and it is also more sus-
ceptible to be trapped in local minimums.

This paper proposes an optimization-based analog
synthesis method that combines the use of Simulated
Annealing/Quenching (SA/SQ) with AOF to create a single
objective function together with a technique to escape local
minimums through the use of multi-objective information,
crossovers and weight adjustment. When a local minimum
is found, the algorithm selects one of the specifications in
which the present solution is not performing well and exe-
cutes a crossover between it and a previous anchor solution
that performs well in this specification. A modification on
the weight of the chosen specification is made to allow SA
algorithm to search new places in the design space. After all
specifications are met, the exploration of the Pareto Front is
done using Particle Swarm Optimization.

The paper is organized as follows. In section 2,
the basic background on optimization problems is
introduced. In section 3, the proposed method for syn-
thesis using SA with crossovers is presented and also
the exploration of the Pareto Front using Particle
Swarm Optimization. The results of the design of a
miller amplifier on a 0.35 µm technology are discussed
in section 4 and the conclusion of this work is present-
ed in section 5.

2. BACKGROUND

The synthesis of analog circuits through the use of
optimization-based approach with simulation-based eval-
uation can be represented as in figure 1. Several recent
works use this approach [4],[5],[6]. This section will
explore the basic knowledge related to optimization con-
cepts and algorithms.

A. Optimization

Analog design synthesis can be seen as an opti-
mization problem with multiple specifications/objectives
to address. The design space, which consists of all possi-
ble values for transistor lengths and widths, capacitances,
resistances and other elements in the design, can be seen
as continuous.

The formulation of this type of problem can be
seen as follows:
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Figure 1. Optimization based approach

where x = [x1, x2, …, xn] is a vector containing the
decision variables, fI: ℜn→ℜ, i=1,...,k are all the objec-

tive functions gi, hi: ℜn→ℜ, i =1,...,m, j=1,...,p are the

constraint functions of the problem. The number of
objective functions in a design is equal to the number of
specifications of the design which usually are several in
an analog design.

In multi-objective optimization problems is not
always possible to say that one solution is better than the
other. This is straightforward to see as one solution could
be better in one specification and the other solution better
in another one. However, there are cases in which one
solution outperforms another in all specifications. In this
case, we say that one solution dominates the other. The
set of solutions of a design that are not dominated by any
of the other solutions is called the Pareto set. This set is
used to form the Pareto Front, which ultimately represent
all the trade-offs involved in the synthesis.

hi

01(55)-AF:Modelo-AF 8/21/12 7:23 PM Page 8



Multi-Objective Design of Analog Integrated Circuits Using Simulated Annealing with Crossover Operator and Weight Adjusting
Weber & Noije

A solution x* is considered to be in the Pareto set
if there is no other feasible solution that dominates x*.
One solution a dominates a solution b (denoted as a>b) if
fi(a) ≤ fi (b) for all i = 1, …, m and a≠b.

In multi-objective optimizations, we call anchor
points the extreme optimal results of the specifications,
while the other points in the Pareto front are usually
trade-offs between several specifications. Following this
definition, the anchor points in a two-dimensional opti-
mization problem involving Gain and Unity Gain
Frequency (UGF) would be the solution with greater gain
of all others and the solution with greater UGF.

Despite of the several objectives present in an ana-
log design synthesis problem, usually the synthesis meth-
ods use algorithms that can work with only one objective
function when looking for a single solution. To convert
the objectives into only one, an Aggregate Objective
Function (AOF) is used. Each objective function is mul-
tiplied by a weight and the result is the sum of all weight-
ed cost functions as it can be seen in eq. 4:

While in Hill Climbing only better solutions are accept-
ed, in Simulated Annealing new solutions may be accept-
ed even if they are worse than the previous. Equation 5 is
used to select the next solution based on the energy costs:
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where F is the AOF function, i is the cost function
index, n is the number of cost functions, wi is the weight

of each function and fi is the cost function of each speci-
fication.

B. Optimization Algorithms

This work deals with two algorithms that are used
in optimization called Simulated Annealing (SA) and
Particle Swarm Optimization (PSO). These algorithms
are used in different phases of optimization (as it will be
explained in section 3) and their basics will be described
in this section.

Simulated Annealing was proposed in [7] and it is
based on thermodynamics process called annealing. The
physical process consists of submitting a metal to a high
temperature and then cooling it slowly in order to reor-
ganize its crystalline configuration in its lowest energy.

SA has several variations [8] and it is one of the
most popular optimization algorithms used in analog syn-
thesis. The main advantages are that it can work with any
type of cost functions, it is easy to implement and is usu-
ally faster than population-based approaches. After the
evaluation of the initial solution, there is an optimization
loop that makes small modifications on the solution, eval-
uates the new solution and then performs a decision to
keep the old or to adopt the new solution. In analog
design synthesis, each solution is evaluated by simula-
tion, reading of the measurements and finally the conver-
sion of these measurements into a cost function. What
differentiates Simulated Annealing from Hill Climbing is
the decision over the acceptance of the new solution.

where k is the solution index, N is the generated
solution, Sk is the old solution, Sk +1 is the next solution,
tk is the temperature, τ is a uniform distributed random
value between 0 and 1 and P(tk,N, Sk) is the probability
of a worse solution to be selected on a given temperature
and solution values. The metropolis probability of accept-
ing a worse solution is described in equation 6:

where C(x) is the cost function that evaluates how
far a given solution is from the designer objectives. The
function used to generate new solutions and the cooling
schedule define how effective and fast a SA algorithm is.
The set of algorithms which employ the SA concepts with
different generation and schedule functions than the clas-
sical SA in order to increase the speed at the cost of cus-
tomizing the algorithm for a specific problem are often
called Simulated Quenching (SQ), which is the case of
the proposed algorithm.

Particle Swarm Optimization (PSO) is part of a
field called swarm intelligence, in which population-based
algorithms try to solve problems by using the decentralized
intelligence found in groups. Particle Swarm Optimization
was initially proposed to simulate movement social behav-
ior, as it can be seen in birds within a flock. James
Kennedy and Russell C. Eberhart [9] proposed the algo-
rithm to be applied in optimization. The algorithm allows
multiple particles (population) to navigate through a design
space while exchanging some information about the places
their already visited. The objective of the particles is to find
minimum cost solutions, and at each iteration the particles
update their positions based on their flight speed. This
speed is calculated based on the experience of each parti-
cle and from the experience of the group as a whole or
from the particle’s neighborhood. Equation 7 shows how
this calculation can be performed:

where w, c1 and c2 are constants that define the influ-
ence of each factor on the final speed, r1 and r2 are uniform
random variables from 0 to 1, v is the velocity vector, t is the
time (or iteration number), xlbesti is the local best result and
xgbest is the global or neighborhood best result. In [10] it is
shown that PSO can be used to analog design problems.

Although the algorithm is simple for single-objec-
tive optimization, the use of PSO for multi-objective prob-

otherwise
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lems requires the storage of all non-dominated solutions in
and external archive [11]. The evaluation of the new solu-
tions no longer is based on a unified cost function, but
based on the dominance among the solutions. The local
best and global best are chosen from these lists based on
the density of solutions in the neighborhood of each Pareto
solution. Therefore, the leaders will always be the solu-
tions that are on less explored regions of the Pareto Front,
collaborating for a more uniform exploration.

3. PROPOSED ALGORITHM

The algorithm proposed in this paper for synthesis of
analog circuits consists of looking for the global minimum
through simulated annealing with crossovers and then fur-
ther exploring the Pareto front through a combination of the
simulated annealing with Particle Swarm Optimization [12].
In this section both the use of simulated annealing with
crossovers and use of particle swarm optimization will be
described

Integration of Simulated annealing with Genetic
Algorithms concepts have been made on the optimization
field [13] [14]. These attempts are usually population
based and therefore keep several individuals performing
SA and then at some point allow them to perform crossover
among themselves.

The algorithm proposed in this paper uses one indi-
vidual and selects solutions to crossover based on the mem-
ory of past promising solutions. Using these memories the
algorithm can effectively escape from local minimums by
using multi-objective information. When using an AOF, the
specifications in which the present solution is performing
worst are usually the responsible for creating the local min-
imum. Therefore, during the SA exploration of the design
space the algorithm can collect enough information so that it
can use them through crossover when it becomes necessary.

There is one solution memory slot for each specifi-
cation. The best solution found so far for each specification
is saved during the optimization process and used to per-
form crossover with the present solution when it is stuck in
a local minimum. Figure 2 shows the flow diagram of the
algorithm. A description of the procedures used is discussed
following.

Choosing which solutions to save is an important
step since they are going to be the responsible for taking the
present solution away from the minimums. Anchor solu-
tions are the ones that are the responsible for the extreme
points in a Pareto front. They represent the best solution
already achieved for each given specification. Although
they are the best, selecting directly these anchor points to be
kept in the memory is not interesting for the flow of
Simulated Annealing. A solution can perform extremely
well in power consumption, for instance, but perform terri-
bly in all other specification. The crossover between the
present solution and this anchor solution would result most
likely in a not functional solution. A more interesting solu-
tion to be saved is one that is not too much far from the
overall cost function achieved by the present solution. It
should be better than the present solution on its worst spec-
ification however not much worse in the overall functional-
ity. This trade-off can be accomplished through the compu-
tation of the weighted sum of the cost for the specification
and the overall cost as it can be seen in the equation 8:

AVj = Cj 0.95 + T 0.05 (8)

where j is the index of the specification, AVj is a
value used to compare the present solution with the anchor
values already in memory to see if the present can be sub-
stitute the previous anchor on the memory, Cj is the cost of
the solution only for the specification j, T is the total cost of
the solution. After each cycle, the present solution has its
partial costs compared with the anchor points through this
equation and the ones that are better are kept.

The detection of local minimums is based on the
number of consecutive failures. If the SA algorithm is not
able to find a solution within the maximum number pre-
viously defined, it is considered that it is in a local mini-
mum. It is important to avoid that minimal improvements
reset the failure counter, which would result in cases
when a local minimum is never detected due to small
refinements on the solution. Therefore, only solutions
that improve the results in more than 1% of the cost func-
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Figure 2. General flow of Simulated Annealing with Crossovers
and Weight modification
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tion are considered real improvements. Equation 9 shows
the behavior of the fail counter:

Besides directing the solution to a better spot by
applying crossover to a previous anchor point, it is also
interesting to change the weights to prevent Simulated
Annealing from going to the same local minimum once
again. This can be made by increasing the weight of the
selected specification after it is sorted on the roulette
wheel. There will be a higher cost involved in getting
worst solutions in that specification once the weight is
increased and SA will try to preserve it while searching
for a better solution. However, as we are dealing with
memory of previous solutions, it is important to keep the
same scale when comparing solutions collected with dif-
ferent weights for the specifications. There are two possi-
ble ways of performing that: by updating all costs of pre-
vious saved solutions when one modification on weight
occurs, or by using these weight modifications as penalty
factors. The last option keeps all memories preserved and
only requires that the general SA algorithm add an extra
penalty factor to the overall cost of a solution. By using a
penalty factor it is also easy to separate the original cost
from the modified one and save anchor points only based
on the original weights.

The equation for the general Aggregate Objective
Function used can be seen in equation 11:
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FCK+1

otherwise

<{=

0 if

FCk if 0

FCk + 1

c(sk) - c(N)
> 0.01c(sk)

c(sk) - c(N)
< 0.01c(sk)

(9)

where FCk+1 is the next fail counter value and FCk

is the present fail counter value. The selection of which of
the previous solutions will be mixed with the present one
is based on how far each of the objectives is from being
achieved. The worse present objectives will grant more
chance to their respectives anchor solutions to be select-
ed to crossover with the present solution. This is per-
formed through a roulette selection among the anchor
points as it can be seen in figure 3 for a 5 objective e case.

The crossovers are the responsible for taking a
solution out of a local minimum. This process produces a
child from two parents, which in this case are the present
solution and the selected anchor solution. It is expected
that the mixture between these solutions will create a
child that has characteristics of the anchor (which will
take the solution away from the local minimum) as well
as some characteristics of the present solution.

Figure 3. Example of roulette selection based on specifications.The
worst specifications have more chance to be selected randomly

A popular crossover operator used for analog
design synthesis is the one-point crossover. In this work,
however, we used a different crossover based on condi-
tional probability that has yielded better results. The
probability of a gene to be from one of its parent depends
on from which parent was the previous gene. This type of
crossover allows more degrees of freedom than the one-
point or two-point crossover while keeping a more struc-
tured child than the uniform crossover. We used the con-
ditional probabilities displayed on equation 10:

where g is the gene, i is the gene index, present is
a gene from the present solution and anchor is a gene
from the anchor solution.

where C(x) is the cost function, i is the index of
specifications, n is the total number of specifications, wi is
the weight for each specification, fi is the individual cost of
each specification, j is the index of penalty factors, m is the
total number of penalty factors, pj is the weight of each
penalty factor and gi is the individual cost of each penalty.
The penalties described in this equation are the ones related
to transistors out of the desired region of operation.

Equation 12 describes the cost to be used after one
or more local minimums are found. A vector sp containing
all specifications previously sorted on the roulette selection
is used to keep track of the modifications on the weights.

Where Cm(x) is the total cost after modification
by adjustment, k is the multiplication factor applied to
local minimums (in this work we used k = 5), li is the
index of the last value on the sp vector, and finally C(x),
w and f are the same as in equation 11.

The only update required after the weight modifica-
tion is from the old solution cost. This is necessary so the fol-
lowing comparisons do not reject the solution after cros-
sover based on its extra weight on the selected specification.

To perform the exploration of the Pareto front, two
subsequent phases are added after the synthesizer finds
what it considers the global optimum. The second phase

h h
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is the exploration of the anchor points and the third phase
is the use of Particle Swarm Optimization to further
explore the front [12].

The process described on this section so far explored
what is considered phase 1, in which all objectives are com-
bined into one through weighted sum and solved using
SimulatedAnnealing with crossovers. The final of this phase
occurs when a solution that respect all specifications defined
by the user is found and also no further improvements are
being accomplished by Simulated Annealing. Therefore, if
the designer is only interested in the best solution and not in
exploring the Pareto Front, this phase is enough to provide
him with a good answer.

The solution from phase 1 is used as a seed to start
several optimizations each directed specifically to one of
the specifications. Each optimization is directed by setting
to zero all specification weights except the one of interest.
However, in order to keep the new solutions within the
minimal specifications, only the weights of the measure-
ments after they achieved the minimum specifications are
set to zero. Therefore, if one of the specifications goes out
of the minimal, it will have a strong cost associated to it
and the optimizer will probably return to the previous
solution. In the path from the seed to each anchor point, all
data are collected in order to aid the Particle Swarm
Optimization.

With all anchor points explored and the collected
data, Particle Swarm Optimization for multi-objective
optimization is performed. It can use the anchor solutions
as particles and the history from the seed to each of them
as experience to each particle. This is one of the major
reasons for selecting PSO as the population-based algo-
rithm in this stage, as it can fully use the information
extracted from the two first phases. The disadvantage of
selecting PSO to explore the Pareto front is the time spent
on updating the external archive after each population
evaluation.

In order to plot the Pareto front, two specifica-
tions are chosen by the designer as fixed axes and mul-
tiple graphs of the Pareto front are plotted using the
other specifications as the third axis of each graph. A fil-
ter procedure for each graph needs to be done to select
from the n-dimensional Pareto solutions which ones are
non-dominated when considering the new 3-dimension-
al objective.

In relation to the state-of-the-art, the proposed
algorithm differentiates from the current approaches by
using multi-objective information in the search for better
solutions while looking for the best solution for the AOF.
In literature, multi-objective information (and not only
the AOF result) is used in synthesis only in cases in which
the search for a pareto front is explored, while in this
algorithm this information is used to perform crossover
and adjust weights of the AOF. Pareto exploration is
restricted to a final stage using a population-based algo-
rithm that uses as seed information collected during the
initial stages.

4. RESULTS

To check the performance of the simulated anneal-
ing algorithm with crossover, the synthesis of a Miller
amplifier (figure 4) in the AMS 0.35 µm CMOS technol-
ogy was performed. Two different performance tests were
used to evaluate the algorithm. All tests were performed
using an Intel(R) Core(TM)2 Duo CPU with a 1.80GHz
frequency and with a RAM memory of 3GB.

The first test compares three algorithms: the
Adaptive Simulated Annealing (ASA) [15], a Simulated
Annealing/Quenching without crossovers using the same
structure as our algorithm however without crossovers,
and finally the Simulated Annealing/Quenching with
crossovers proposed in this paper. The objective is to
achieve the specifications described in Table I in a 20-
minute bounded synthesis. As the techniques used in this
work are stochastic procedures, the evaluation is done
through 40 syntheses procedures and further each pair of
techniques is compared through the non-parametric
Wilcoxon-Mann-Whitney test [16]. The null hypothesis
is that the probability of a sample from one technique to
be greater than the other is equal 0.5. Rejecting this
hypothesis means that one technique has more chances of
yielding a better answer than the other. Equation 13
shows the hypotheses:
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where H0 is the null hypothesis, H1 is the alterna-
tive hypothesis, xi is an observation of one technique and
yi is an observation of another technique.

Table 1. Specifications of the Miller Amplifier for AMS 0.35 µm

Parameter Specification

Vdd 1.65 [V]
Vss -1.65 [V]
UGF > 15 M [Hz]

DC Gain > 80 dB [V]
Phase Margin > 60º

Slew Rate (pos.) > 20 M [V/s]
Slew Rate (neg.) < -20 M [V/s]

ICMR > 2 [V]
Output Swing > 2 [V]

CMRR > 80 dB [V]
PSRR > 70 dB [V]
Isupply < 300 µ [A]
Area < 1000 [µm]²

The results of the first test can be seen in Table 2.
The mean and median of the SA/SQ with crossovers
technique were better than the ones from ASA and
SA/SQ. To verify this difference, the Wilcoxon-Mann-
Whitney comparison test with a significance of 0.05 was
performed and the result shows that both ASA and
SA/SQ are different from SA/SQ with crossovers (Table
3). This means that a synthesis using SA/SQ with
crossovers have greater change to return a solution close
to the specifications than the other algorithms.
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The second test was the synthesis of a Miller
Amplifier not bounded by time, but by number of itera-
tions without improvement. The algorithms tested were
the SA/SQ and the SA/SQ with crossovers, as these were
the algorithms that performed better in the first test (using
the median as comparison), which were also compared
with a manual design found in literature [17].

13Journal Integrated Circuits and Systems 2012; v.7 / n.1:7-15

Table 2: Comparison between Simulated Annealing (SA) and SA
with Crossovers for 40 synthesis procedures bounded by 20 min-
utes each. Values are the results of the cost function (equation 11).

Measure ASA SA/SQ SA/SQ with
Crossovers

Mean 13.68 17.05 3.3
Median 4.96 0,83 0.45
Variance 446.11 687.85 37.03
Std. Deviation 21.12 26.23 6.09
Minimum 0.0735 -0.0017 -0.005
Maximum 93.83 99.02 25.00

Figure 4. Miller amplifier topology

Table 3: Results of the Wilcoxon-Mann-Whitney test for the com-
parison among the ASA, SA/SQ and SA/SQ with crossovers
techniques.

Technique 1 Technique 2 P Different
(P>0,05)

ASA SA/SQ 0.904 0
ASA SA/SQ with crossovers 0.003 1

SA/SQ SA/SQ with crossovers 0.002 1

Results of the second test can be seen in Table 4 and
show that the crossovers effectively improved the final
result, although it took 27% more time than the regular
SA/SQ. The results also show that the algorithm can per-
form well when compared with manual designs, as the solu-
tion had similar measurements although some specifications
were better achieved by the manual design and some by the
synthesized version. The final dimensions are in Table 5.

These same results of the version with crossovers
were used as seed to the Pareto set exploration. The results
for the search for the anchor solutions and the time spent on
each optimization can be seen in Table 6.

Table 4: Optimized Results of the Miller Amplifier Synthesis for
AMS 0.35 µm using only Simulated Annealing, using Simulated
Annealing with Crossovers and a result found in literature for the
same technology [17]

Parameter SA/SQ SA/SQ Manual
with Design

Crossovers found in [17]

UGF M[Hz] 14.96 15.60 15.19
DC Gain dB[V] 75.91 82.63 85.42
Phase Margin [º] 60.02 61.23 60.07
Slew Rate (pos.) M[V/s] 19.22 22.18 9
Slew Rate (neg.) M[V/s] -25.99 -31.55
CMRR dB [V] 73.33 82.03 89.9
PSRR dB[V] 79.78 85.10] -
Current Supply µ [A] 299.31 296.88 259.9
Gate Area [µ m]² 255.00 980.47 925*
Crossovers - 19 -
Synthesis time [min.] 66 84 -

* we did not consider the M9 transistor found in the reference for
calculation since it does not exist in the design used for this work

Table 5: Dimensions of the Miller Amplifier after Synthesis

Device Value (W/L)

M1 69.2 µm / 5.92 µm
M2 69.2 µm / 5.92 µm
M3 14.1 µm / 2.23 µm
M4 14.1 µm / 2.23 µm
M5 136 µm / 0.4 µm
M6 100 µm / 0.4 µm
M7 100 µm / 0.4 µm
M8 136 µm / 0.4 µm
Cc 1 pF

Ibias 27 µ [A]

Table 6: Time and best values for each optimization of the anchor
point search for the Miller amplifier (these values are not all
achieved in a same solution)

Parameter Best value Time (minutes)

UGF 20.27 M [Hz] 14.4
DC Gain 86.08 dB [V] 19.2

Phase Margin 63.28 º 5.5
Slew Rate (pos.) 22.71 M [V/s] 2.0
Slew Rate (neg.) -32.75 M [V/s] 6.9

ICMR 2.99 [V] 34.0
Output Swing 2.95 [V] 3.2

CMRR 82.69 dB [V] 1.8
PSRR 87.18 dB [V] 10.8

Current Supply 296.88 µ [A] 1.73
Area 352.3 [µm] ² 20.52

After applying the Particle Swarm Optimization,
area and current supply specifications were chosen to be
the fixed axes of the Pareto front graphics, which can be
seen in figure 5. This phase of the optimization took 182
minutes (including the anchor solutions search).

The 3D graphs show the trade-offs of the circuit,
such as the need of greater area and current supply in order
to achieve unity gain frequencies as high as 20 MHz. The
solutions showed in Table 3 as well as in the graphs indicate
valuable information to the designer, such as how far can the
solution can increase one objective while still keeping the
other measurements within specifications (e.g., the gain in
the design can go to 86 dB while all other specifications are
maintained).
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5. CONCLUSION

A method for analog synthesis with Simulated
Annealing using crossovers with past anchor solutions
and auto weight adjustment was presented. The method
uses the speed of Simulated Annealing aided by multi-
objective information to escape local minimums. The
performance of the algorithm was tested through the syn-
thesis of a Miller amplifier in AMS 0.35 µm CMOS tech-
nology. The final design had 15.6 MHz of UGF, 82.6
dBV, 61º phase margin, 26 MV/s slew rate, area of 980
um² and current supply of 297 µA. The design was per-
formed in 84 minutes and the Pareto front was explored
resulting in 3D plots of the design space in 182 minutes.
Comparisons with the Adaptive Simulated Annealing, a
general Simulated Annealing/Quenching algorithm and
the proposed one in a 20 minutes bounded synthesis were
performed and indicate the proposed algorithm has more
probability of achieving better results.
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