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ABSTRACT

Due to the need of high performance, new wireless telecommunications standards such as WIMAX and LTE
are using turbo-codes as a forward error correction (FEC) choice. This design targets either a self-contained
IP (Intellectual Property) or integration into the physical layer project. This work presents all steps for the
implementation of an LTE standard turbo decoder: from algorithm modeling in high level programming lan-
guage to architecture using a sliding window approach seeking throughput needed, getting into physical
implementation at TSMC 65nm. Each aspect of the specification and performance were analyzed in their

proper stages.

Index Terms: ASIC, VLSI, LTE, Digital Communications, Turbo-Codes.

1. INTRODUCTION

New wireless communication standards such as
3GPP Long Term Evolution (LTE) and WIMAX intend to
provide high speed rates of upload and download ensur-
ing data reliability. One of the main bottlenecks is to
achieve the high throughput rates requested by those
standards. The standards employ the near-Shannon limit
error-coding known as turbo-codes, proposed in 1993 by
Berrou [1]. The process of decoding shown in [1]
requires several iterations over a data block to achieve
maximum estimation. The main bottleneck is to achieve
high throughput rates requested by those standards.

To overcome this barrier this paper presents the
implementation of an 8x parallel LTE turbo decoder that
increases throughput without performance degradation.
The parallelism is allowed by the QPP interleaver [3] that
processes the contention-free property.

2. TURBO-CODE BASIS
A. Turbo Encoder

The turbo encoder in the LTE standard is specified
as shown in Figure 1 [2].

It is composed of two parallel convolutional 8-
state encoders linked by an interleaver. Input data at time
k, ¢;, 1s fed to the first encoder in a regular order, gener-

ating the systematic x; and the parity z, while the second
encoder is fed with data in an interleaver order c’;, from
this second encoder we get coded bit (parity?2) z’;. Figure
2 shows in a trellis diagram the possibilities for the states
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Figure 1. 3GPP LTE Turbo Encoder

based on the input of the encoder. To make it possible to
send the encoder to a known state 3GPP standard estab-
lishes a mechanism to send both decoders to initial state,
initially the first one followed by the second. The bits
generated with this process are named tail bits. This
structure makes it possible to achieve an approximately
coding ratio, where K information bits are coded into bits,
and those additional 12 bits relates to trellis termination,
6 for each encoder. It is also defined in [2], 188 possible
block sizes (K bits) from 40 to 6144.

B. Turbo Decoder
The main idea behind turbo decoding is to
improve the error rate based on successive exchange of

the extrinsic information L, obtained from the log-likeli-
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hood ratio (LLR) between two soft-input/soft-output
decoders (SISO).

Figure 2. Trellis Diagram

As proposed by [1], in the beginning of the
process, the first decoder calculates the first LLR using
the systematic soft-bit x;, and the parity soft-bit z, as
inputs. Immediately after having calculated the LLR, the
second SISO uses the interleaved version of the system-
atic soft-bit, the parity soft-bit z’, (that comes from the
encoding of interleaved data) and also the interleaved
extrinsic information coming from the first SISO, now
called as a priori information L,. The process is going to
be repeated for a specific number of iterations or after the
LLR convergence. Hard decision is the process of taking
the LLR to 0 or 1 depending on its sign. The decoder is
depicted in Figure 3.
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Figure 3. Turbo Decoder Diagram
C. MAX-LOG-MAP

In order to implement SISO decoders an optimal
decoding solution called Maximum A Posteriori (MAP)
was proposed by [4], but its increased complexity in com-
parison to the gain of performance was not attractive
when compared to Viterbi decoding. However, in [5], an
algorithm approximation called MAX-LOG-MAP was
described. This approach maintains performance while
presenting no more than four times the complexity of a
Viterbi decoder for the same code. In order to define the
a posteriori metric, this parameter is used not only to give
the hard decision but also to calculate the extrinsic infor-
mation. It is going to be used as a priori information in
turbo decoding process. The branch metric calculates the
probability of the encoder Finite State Machine (FSM)
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going from a state s’ at the time to a state s at £. It is
defined by:

¥i(s'.8) = mp Oy |s.s) + InP (s]s) (1)

where y, is the sequence of received channel out-

put symbols. Let the forward metric &k be the probability
of being taking to a state from a state defined by:

ai(s) = maxg[ay_;(s) + 1. (s.9)]; ay(0) =0; )

apls) = —co,s# 0 3)

Also the backward metric, that is calculated simi-
larly to the forward metric but starting from the last node
of the trellis, is given by:

Br-10s) = max; [, (s) + v, (s".5)); By (0) = O; (4)
By(s) = —m0,52 0 (5)

Those metrics can be combined to calculate the
approximation of the a posteriori probability ratio as fol-
low:

Lk (,S) s maxs'.s:uk=+1 [ak-l(s') + ¥ (5 ra S) + ﬁk (S)] —
maxg o, lag i () + v (s'5) + Bi(5))] (6)

D. Interleaver

Coding scheme was carefully considered during
LTE standard specification [2], a quadratic polynomial
permutation (QPP) contention free interleaver was rele-
vant for turbo-code choice [9] as it allows for a great
degree of parallelization. To ensure high throughput
turbo-code needs a contention free interleaver, then mem-
ory and SISO can be split in several blocks, assuring that
each memory block will not be accessed by different
SISOs at the same time. Interleaver is important in turbo-
code scheme as it lower the correlation between neighbor
bits. The same error must not appear in the same bit for
the interleaved sequence and the non-interleaved
sequence as it will be sent in different moments. To bet-
ter perform this task a pseudo random sequence is creat-
ed in a way the encoder and decoder can create de same
sequence for the same data block. Considering the hard-
ware architecture, the interleaver function is represented
in (7), where and are constant values provided in LTE
specification [2] and K is the number of bits in the encod-
ing package. This relation would require an intensive cal-
culation as it uses a square and a reminder operation. An
approach to reduce operations is to consider the calcula-
tions are done in a progressive way. The reminder opera-
tions are done in every calculation cycle then it can be
reduced to simple subtraction operation. The square
would not be needed anymore, as knowing the previous
value of interleaver position and an intermediate register
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which keeps the summation of parameter every cycle,
the operation is reduced to adders as shown in (10).

wg = (i + fi)modk (7)
Tieyy = (i + £ + £ + 2i + 1))modk (8)
(Tivyy — 7y ymodk = (fy, + fo + 2f))modk ©)

Tiiv1) = (ﬂm +(fi + ﬁ)modk+
(Z} -0y 2 /2 Imodk)ymodk) modk (10)

To allow parallelization there is a direct relation-
ship between the interleaved address for each block. The
calculations can be simplified to prove the relation is sim-
plified to the usage of different memories with the same
address. This result shows the QPP property, that each
memory is used by a different SISO. The relationship
between an interleaved address and another one n posi-
tions ahead is shown in (12).

Tamy = (Ri+ fin + % + 2fin + fon*dmodk (11)
Tem = (Tgy + fin + 2fin + fn?)modk (12)

The reminder property shown in (13), is very use-
ful for hardware simplification as perform this operation
with constant value, especially if this is a 2°s multiple, has
easy implementation. It becomes a bit mask in the Least
Significant Bits (LSB) of the variable.

(£ %) modk = X (f, modn) (13)

The scheme using 2 process blocks has a simple
implementation as it uses the information that is an odd
number which allows the reduction from (14) to (15).
From results it is easily extracted that each SISO will
always access different memories.

Tk = (mw + (A %)modk + (fyik)modk +

(i %}mﬂdk)mad k (14)

i
ﬂ(i*_% = (ﬂ:m + ;) modk (15)

Four process blocks can use the same analysis
used for two as seen in (17). In this case the same simpli-
fications are done based on the information that the value
of K for block sizes with 4 sliding windows are always
multiple of 16. The same analysis can be done for in

(18).
7, = (g + (G Prmodk + (fyi7)modk +
(£ f—s)madk)mudk (16)
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3
n(i+';‘) = (“"(D + ;(flmo‘d‘l-)) modk 17

3k
ik = (m + 5 (fimods)) modk (18)

For 8 sliding windows the relationship between
memories is more difficult to be detected but it is still
valid. The simplification can be done as block size are
always multiple of 64.

ik _jk
”(i#}') =(my + (4 J;:)‘rrl',mdi‘c + [fzt}:}nwdk +

& %)madk)madk (19)

= L]
’?‘[:n%} = (mp + > (fimod8 +
E (f,mod4) (imodk))mod4)modk 20)
3.VLSI IMPLEMENTATION

A. System Modeling

In order to have a design reference model and to
early estimate performance results, a behavioral descrip-
tion were designed in a high-level programming lan-
guage. MATLAB language has been chosen to perform
this task as it can take advantage of its powerful matrix
manipulation and to make use of some built-in communi-
cation processing functions. This model allows an early
analysis of the algorithms and its performance, ensuring
the correctness in using a specific solution.

At this point the main definition is related to the
MAX-LOG-MAP algorithm. In a first approach it is
described without any constraints, however, as the archi-
tecture becomes more defined, the description gets closer
to the hardware approach. The final model does the cal-
culations exactly like the hardware does. This allows a
very trustful analysis, as the performance simulated in
this stage the same as in the final design. With this
description most of the strength of the high-level lan-
guage was put behind to make it a true reference model
for the hardware. In this project the approximation to the
hardware let the MATLAB model simulation really slow,
a study about performance of software blocks allows the
correct replacement of these blocks for less computing
intense model using the programming language C.

A simulation environment was built to check the
model and to perform the analysis. One of the verification
environments built for the RTL (Register Transfer Level)
project uses the input/output signals from the high-level
simulation to check design functionality. Figure 4 shows
the verification environment for both MATLAB and RTL
codes. The input data is randomly generated as a vector
of bits with a specified length, passing through all trans-
mission process. Original data is encoded and the output
is concatenated as a sequence of systematic and parity
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bits, then the result array are modulated. Modulation sim-
ulation is a very simple process, it consists in grouping
the bits depending on the modulation scheme and map it
to a symbol. These symbols are exposed to the channel
effect, which is simulated as the insertion of an Additive
White Gaussian Noise (AWGS) in the signal. This
approach is proven to get close to the real channel behav-
ior. These signals then pass through an LLR finally been
ready for decoder. These data can be stored to provide
information for the RTL Verification Methodology called
Bitmatch, this will be discussed deeply lately.

The output data of the decoder compares with the
generated in the beginning of the verification chain. This
comparison gives valuable performance information, as it
shows the number of frames that are not decoded cor-
rectly. This information can be represented as in Table 2

with the noise and modulation scheme.
4{ Performance Analysis }—
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Figure 4. MATLAB verification environment
B. Design

Focusing in achieving the required high through-
put, the proposed implementation was a parallel architec-
ture going from 1 up to 8 SISO decoders depending on
the input frame size. This architecture proposes those
input data to be broken in the proper number of windows,
defined by Table 1 and each window is saved in a mem-
ory and processed individually by its respective SISO. In
order to reduce the loss of performance caused by this
approach, overlapped windows were used in those com-
putations.

Systematic, Parity and Parity2 received data are
spited, according with the number of SISO processors
and stored into 3 distinct block memories containing 8
memories each. The addressing of those memories is pos-
sible through the contention free interleaver and the con-
trol unit CTRL. To extrinsic information storage, an extra
memory block containing 8 memories are required.
CTRL block is going to ensure the correct number of
SISO decoders to be used depending on K and manage
cycles of processing, defined as SISOl and SISO2.
Multiplexed data coming from systematicl or systemat-
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ic2 is provided to SISO. Also addressing of systematic
block of memories allows it to feed SISO processor with
systematic data or the interleaved one depending on the
cycle. As shown in Figure 6, SISO processors are shared
and SISOL1 cycle regards to the calculation of L, and L,,
using as inputs systematic, parityl and L,, when avail-
able. SISO2 cycle uses systematic interleaved, parity2
and L. The sharing of SISO processors is possible as the
calculations are done in different time windows. The
sequence of processing starts in SISO2 cycle and finish-
es in a SISO1 cycle saving in this way a memory at out-
put as the data in this case does not need to be de-inter-
leaved and also saves fracKN clock cycles, where N is the
number of SISOs used. At each selected SISO L, and L,
are calculated as shown in Figure 7.

First GAMMA calculation block reads L,
Systematic and Parity stored in memory blocks and is
calculated for 16 possibilities. At the same time calcula-
tion starts, it is possible to start calculation at
BETA/ALPHA block. f is calculated at this moment
because CTRL set up the block with f initialization
parameters and read memories in a reverse way, match-
ing with backwards calculation. It is calculated for all
possible states (in this calculation needs a correction fac-
tor to improve max-log approximation results). S must be
normalized for all states and the results normalized are
stored in a internal memory (one more time correction
factor are needed).

Table 1. Number of SISOs related to the frame size

K< 784 1
784 < K< 1568 2
1568 < K< 3136 4
3136 < K 8

|
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Figure 5. Sliding Window scheme

After § calculation finishes, y is calculated again,
now in a direct way, so calculation starts. One more time
using max-log approximation adds a correction factor. L,
will be calculated right after o calculation has its initial
results. It is going to use also the stored f and y at this
processing. At the same time window the extrinsic infor-
mation is calculated using systematic, parity and L, this
last one can give same attenuation depending on reliabil-
ity of channel represented by .
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Figure 6. Architecture proposed for Turbo Decoder

C. Verification

This project uses two different approaches to per-
form verification. One is based on performance analysis
and the other in the comparison with a reference model.
They both have its strengths and weakness, and they
were used in a complementary way in different stages of
the design.

As described previously the system model uses an
environment that allows a good segregation of Design
Under Test (DUT), which is the reference model for the
RTL. This characteristic can be used to exchange infor-
mation between the MATLAB verification environment
and the RTL (Verilog) environment. In this approach to
run a set of configuration, the MATLAB must run first,
generating input data to the DUT as well as the output
that are stored in files, this can be seen as an off-line sim-
ulation. The stored data are used in a Verilog environment
to feed the RTL DUT and compare the results.

The second verification environment is based on
an object oriented SystemVerilog methodology. Modi-
fications were done trying to achieve easy integration and
reusability. The goal in this methodology is to allow
usability to verify not only turbo decoder block but to
easily integrate it in the whole LTE core verification too.

The modified verification environment uses ran-
dom generated input data to feed the design. The envi-
ronment uses most modern verification items such as

La |
PAR|| GAMMA BETA/ - Lk
sys ALPHA Memory LLR
| Le | ILe
Sigma L1

Figure 7. SISO Diagram
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TS, A

driver, monitor, etc, and the turbo encoder, a FIFO that
controls data flow and generates signaling data, modula-
tor (modulation map), a channel emulator and finally the
turbo decoder the is the Design Under Test (DUT). The
flow can be seen in Figure 8. First the encoder receives a
random generated, after that, the modulation mapper
maps bits to symbols, this is the way to send data through
the channel. The modulation scheme can be BPSK,
QPSK, 16QAM and 64QAM. The noise is denoted in dB
representing the degradation added in the symbols. An
additive White Gaussian Noise (AWGN) is a good
approach to emulate the channel, in this system a zero
mean and variance 1 random generated noise signal, with
a constant spectral density and Gaussian distribution in
amplitude. After noise insertion, data feeds the decoder
and finally it checks the error correction level the system
achieves. It measures the Bit Error Rate (BER) and the
Frame Error Rate (FER) which is the number of sent
blocks that have error in bits after been decoded.

D. Performance Analysis

The main concerns in the project are related to
Frame Error Rate under a Signal Noise Ratio (SNR) con-
dition, throughput, power consumption and silicon area.
The last two parameters can only be measured after the
physical implementation, and they are not defined in the
specification. They are both affected by the technology
and frequency.

The FER describes the design error correction
capability as it reveals the number of frames with deco-

Table 2. Performance with different block sizes

N° of Package Simulation FER
SISOs size Samples
1 40 2000 0.0675
1 768 2000 0.0055
2 784 2000 0.0035
2 1536 2000 0.0090
4 1568 2000 0.0060
4 3072 2000 0.0095
8 3136 2000 0.0085
8 6144 2000 0.0120
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ded data different from the transmitted. This parameter
was used instead of Bit Error Rate (BER) as the frame has
a mismatch in one bit, the whole packet is corrupted.
Table 2 shows an example of the analysis, for 8.4dB SNR
modulated with 64QAM with 8 iterations.

Another interesting data is presented in Table 3
and Figure 9, showing the FER with different modula-
tion. For the same block size the FER has a great varia-
tion depending on the modulation scheme. It is widely
known that as the modulation becomes more complex,
carrying more data per symbol, the demodulation gets
more error prone. Other blocks of the LTE system will
determine the modulation scheme adoption, the turbo
decoder does not need this information, and it is only
used in this project to analyze performance.

In the LTE project, turbo decoder is one of the
main bottlenecks to achieve the specification data rate.
The throughput directly affects the amount of received
data the processor can manage without any stall. This
parameter calculation is not very simple, and requires the
analysis of several blocks of LTE. The complete interpre-
tation of the standard may not be of great interesting in
this paper, but some analysis can be done. The latency is

ten + iter(3 (—2— +10) + 6)(iter — 1) (—5—+13)
NE e :

determined by the number of clock cycles required to
perform the error correction,

where /en is the package size, iter number of iter-
ations and window number of sliding SISOs used. The
latency directly affects the throughput, as with a faster
system it can process more data in the same period. The
amount of clock cycles an input data takes to be
processed is represented in (21). The final throughput is
calculated based on (21). The adopted frequency has to
be considered as the throughput depends on the amount
of bits calculated in a second.

Table 3. Performance with different modulations (FER%)
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Figure 9. Performance (FER) with different modulation

E. Implementation Results

The design proposed was synthesized and physi-
cal implemented for TSMC 65nm CMOS technology.
The target frequency was 120MHz, as it is the maximum
clock for the whole system it was integrated. This turbo-
code architecture could support higher frequency, but to
integrate it in a physical layer core it was important to use
a coherent clock signal. One of the main reasons not to
adopt faster frequency is the power consumption that is
increased with the speed, not only for the turbo decoder
core but also for other parts of the chip such as clock gen-
erator. An important information in the VLSI implemen-
tation as seen in Table 4 is the area usage. This is relevant
in order to compare different architectures efficiency. In
this design, memories are responsible for most of the area
utilization, specifically 82% of the entire turbo decoder
area. This oversized memories, when compared with [8],
are given by the fact of stored fixed-point variables, such
as systematic, parityl, parity2, L, and metrics use a high-
er bit length. Throughput results are dependent of fre-
quency and parallelization choice, with a trade-off
between performance and area/power consumption.
Some substantial results can be viewed in Table 4.

SNR(dB)

modulation -2.5 -2 -1 -0.5 0 2 3 4 6 8 9
BPSK 3.45 0.95 0 0 0 0 0 0 0 0 0
QPSK 72.5 58.05 27.95 16.35 7.7 0.9 0.1 0 0 0 0 0
16QAM 1 1 99.25 98.9 97.45 9125 764 51.25 23.3 0.75 0 0
64QAM 1 1 1 1 1 99.2 97 88.9 53.85 10.75 3.95
Table 4. Comparison with other architectures

Work Map Parallelism Iterations Frequency Throughput Technology Area Power

Algorithm (MHz) (mm?2) (mw)

This MAX-LOG-MAP 1/8 SISO 6 120 75 Mbps 65 nm 6.7 296.2
[6] LOG-MAP 32 SISO 6 200 711 Mbps 65 nm - -
[7] MAX-LOG-MAP 4/8 SISO 5.5 302.6 326.4 Mbps 130 nm 3.57 788.9
[8] MAX-LOG-MAP 64 SISO 6 400 1.28 Gbps 65 nm 8.3 845
Journal Integrated Circuits and Systems 2012; v.7 / n.1:16-22 21
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Figure 10. Floorplan view

4. CONCLUSION

This paper details the implementation of a parallel
turbo decoder for LTE standard, analyzing aspects such
as modeling, design, verification and physical implemen-
tation to TSMC 65nm CMOS technology. The proposed
circuit was designed to achieve high throughput.
Interleaver and MAP algorithm optimizations in a paral-
lelized architecture made possible achieve high through-
put rates, without performance losses. A comparison with
other authors must take in account different aspects like
frequency and level of parallelization that will result in
higher throughput but increasing area and power con-
sumption.
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