
37Journal Integrated Circuits and Systems 2012; v.7 / n.1:37-46

New Motion Estimation Algorithms and its VLSI
Architectures for Real Time High Definition Video Coding

Gustavo Sanchez1, Marcelo Porto1, Diego Noble1, Sergio Bampi2, Luciano Agostini1

1Federal University of Pelotas, Group of Architecture and Integrated Circuits, Pelotas, Brazil
2Federal University of Rio Grande do Sul, Informatic Institute, Porto Alegre, Brazil
e-mail: {gfsanchez, porto, dvnoble, agostini}@inf.ufpel.edu.br; bampi@inf.ufrgs.br

1. INTRODUCTION

Nowadays, a vast number of applications use dig-
ital videos. Usually, these applications need to focus on
performance for real time at 30 frames per second, which
is necessary to show sense of continuity. With this
increase in the number of applications, the video quality
is also been increasing, which makes high definition
videos more common. High definition videos need a lot
of storage space and also a high bandwidth to be trans-
mitted. These facts contribute to increase the effort in
video coding research, and the development of new video
coding standards. Current video coders, as H.264/AVC
[1], for example, divide the coding process in many steps.
The main steps of a current video coder are: intra frame
prediction, inter frame prediction, transforms and entropy
encoding. The inter frame prediction is explored by the
Motion Estimation (ME) and is the focus of this work.

ME represents 80% of the total computational
complexity of current video coders [2]. The ME must
find the best matching in the reference frames for each
block of the current frame, defining a motion vector indi-
cating where the best matching was found. A search algo-
rithm defines how the search is done and a similarity cri-

terion is used to compare the candidate blocks. The
search for best vectors is known to be very expensive in
terms of calculations and, consequentially, in terms of
processing time. The Full Search (FS) [3] algorithm must
explore all possibilities in a given search area, which
implies in a very high computational cost, especially for
high resolution videos, which requires the use of larger
search areas. Based on this fact, it is important to explore
new solutions, which bring a good tradeoff between
objective quality, measured in Peak-to-Signal Noise
Ratio (PSNR), and computational cost.

There are many fast search algorithms in scientif-
ic literature. These algorithms deal with this complexity
at different levels of impact in objective quality (PSNR).
Exploring characteristic of locality among temporal cor-
related blocks allows these algorithms to achieve good
results in terms of numbers of calculations and also
allows achieving high video quality when low resolution
videos are considered. However, these algorithms assume
that the error function decreases monotonically on the
surface of the frame, in order to speed up the algorithm.
This assumption does not hold true sometimes, and the
search might be trapped into a local minima, especially in
high definition videos.

ABSTRACT

This paper presents an efficient hardware design using the new Motion Estimation (ME) algorithms named:
Multi-point Diamond Search (MPDS) and Dynamic Multi-Point Diamond Search (DMPDS). These algo-
rithms are more efficient to avoid from local minima falls than traditional fast algorithms.This fact contributes
to increase the quality of the motion vectors, especially in High Definition (HD) videos, were the number of
local minima are considerable higher. Two versions of MPDS algorithm were proposed. The first one,
focused on high performance, is capable to process videos QFHD at 30 frames per second when synthe-
sized to Altera Stratix 4 and 90nm TSCM, with only 18mW. The second version is focused on quality
enhancement and is capable to process HD 1080p videos in real time. The DMPDS architecture has been
developed focusing on high performance and was synthesized to Altera stratix 4. This architecture is capa-
ble to process videos QFHD at 34 frames per second. In comparison to related works, our solutions
obtained the highest processing rates, and a good trade-off among power consumption, area, memory bits
and performance.

Index Terms: Motion Estimation, High Definition, VLSI Architecture.

04(52)-AF:Modelo-AF 8/21/12 7:32 PM Page 37



New Motion Estimation Algorithms and its VLSI Architectures for Real Time High Definition Video Coding
Sanchez, Porto, Noble, Bampi & Agostini

The majority of the published ME search algo-
rithms only considers low resolution videos, as QCIF and
CIF, in its experiments. However, the quality results of
the ME algorithms can significantly change with the
increase of the video resolution. For low resolution
videos, the quality results for FS and many other fast
algorithms are very close. The great amount of pixels in
high definition videos may lead the fast algorithms to
choose, more frequently, local minima as the best match-
ing. Thus, the quality losses (in comparison with FS) are
significant in this scenario. Techniques to avoid local
minima must be explored to enhance the video quality,
without a significant increasing in the ME computational
complexity.

The FS algorithm is capable to avoid from local
minima by using brute force testing all available possi-
bilities. Another strategy to avoid from local minima is
using multi-point algorithm, where the proposed algo-
rithm should start search in multiple initial points.

This paper presents two new motion estimation
search algorithm named Multi-Point Diamond Search
(MPDS) and the Dynamic-Multi-Point Diamond Search
(DMPDS). Hardware architectures have been developed
implementing these algorithms, targeting low power and
real time processing of high definition videos, as HD
1080p and QFHD (3840x2160). MPDS and DMPDS
algorithms are more efficient to avoid local minima falls
than traditional fast algorithms, especially in high defini-
tion videos. Software evaluation shows that MPDS and
DMPDS algorithms can significantly improve the quality
for high definition videos, in comparison with Diamond
Search (DS) algorithm [4].

Two versions of the MPDS hardware architecture
were developed, described in VHDL and synthesized.
The synthesis results are presented for Altera Stratix 4
FPGA and TSMC 90nm standard cells technology. Both
architectures are able to reach real time (30 fps) when
processing HD 1080p sequences, with low power con-
sumption. One of the MPDS architectures is also able to
reach real time (30 fps) processing for QFHD videos.
This architecture can process 30 frames per second with
only 4.5mW and 9mW, when synthesized to ASIC with
90nm standard cells technology, for HD 1080p and
QFHD videos, respectively. The DMPDS hardware
architecture was also described in VHDL and synthesized
to an Altera Stratix 4 FPGA. The architecture is able to
reach real time when processing QFHD videos consum-
ing low hardware resources.

The paper is organized as follows: Section 2
presents a study about the ME in high definition videos.
Section 3 explains the MPDS and the DMDPS algo-
rithm and presents some software evaluations of these
new algorithms on high definition videos. Section 4
shows details about the architectures design and section
5 presents the synthesis results and comparisons with
related works. Finally, section 6 presents the conclu-
sions.

2. MOTION ESTIMATION IN HIGH
DEFINITION VIDEOS

Hardware implementations for motion estimation
are widely used to speed up the generation of the motion
vectors. The use of hardware solutions is still more impor-
tant when real time processing is considered, mainly for
high definition video coding. There is a large amount of
published works with hardware architectures for the motion
estimation process, including both FPGA and ASIC solu-
tions. Most of the solutions are based on the traditional Full
Search (FS) algorithm. There is a dramatic growing in the
use of high definition videos. Even mobile devices, as cell
phones and digital cameras, can support videos with high
definition. The growing in digital videos definition, in fact,
is obtained with the growing in the number of pixels inside
a frame, increasing the frame resolution.AHD 1080p frame
has about 82 times more pixels than a QCIF frame, howev-
er, both must represent the same scene.

The increase in the video resolution can directly
affect theME results. The fast ME algorithms can be affect-
ed by this characteristic, generating different results, for the
same video, in different resolutions. High resolution videos
tend to present very similar neighboring pixels (much more
than low resolution ones) and this fact contributes to
increase the occurrence of local minima falls.

For this evaluation, DS and FS algorithms were
applied to ten HD 1080p video sequences to demonstrate
the influence of the video resolution growing in the ME
process. The used video sequences were: blue_sky,
man_in_car, pedestrian_area, hush_hour, station2, sun-
flower, riverbed, rolling_tomatoes, traffic and tractor [5].
These sequences were resized for many lower resolutions:
256x144 pixels (144p – which is equivalent to QCIF reso-
lution in a 16:9 aspect ratio); UMD 272p (480x272); EDTV
480p (854x480); HD 720p (1280x720) and HD 1080p
(1920x1080). All the experiments in this paper will use
these video sequences.

Figure 1 shows the average PSNR gain curves
(from the ten video sequences) of DS and FS algorithms,
considering the five cited resolutions. The used block size
was 16x16 pixels, and the search area grew proportional-
ly to the video resolution growing.

38 Journal Integrated Circuits and Systems 2012; v.7 / n.1:37-46

Figure 1. Average PSNR curves of DS and FS algorithms con-
sidering five resolutions.

04(52)-AF:Modelo-AF 8/21/12 7:32 PM Page 38



New Motion Estimation Algorithms and its VLSI Architectures for Real Time High Definition Video Coding
Sanchez, Porto, Noble, Bampi & Agostini

Through analysis of Figure 1 curves it is possible to
notice that the difference in PSNR results between DS and
FS algorithms grows significantly with the video resolution
increasing. The FS ever increases the PSNR gains with the
video resolution growing. This happens because the search
area also grows and the FS algorithm can explore all candi-
date blocks in the search area. For the DS algorithm, the
growing in the search area does not provide a significant
increase in PNSR because the DS gets trapped in local min-
ima. In fact, the efficiency of the DS algorithm is reduced
for high resolution videos. The great similarity of neighbor
pixels (and blocks) leads the DS algorithm to more fre-
quently fall in local minima. Then the PSNR losses of DS
in relation to FS increase with the resolution increase.

These results shows that the DS algorithm is effi-
cient for low resolution videos, since it has PSNR results
which are very similar to FS results, but it presents a sig-
nificant computational cost reduction. For high definition
videos, the PSNR losses become significant, and the rel-
evance of the algorithm is only related with computation-
al cost reduction. This experiment demonstrates that
quality results for fast algorithms in low resolution videos
can not be extrapolated for high definition video scenario.

A. Local Minima Analysis

The efficiency loss of DS algorithm in high defini-
tion videos is mainly caused by the increase of local mini-
ma falls. With the search area growing, the ME optimum
candidate block can be far away from the center of the
search area. Fast algorithms, like DS, can be easily trapped
in local minima, before achieving the optimal result.

Sum ofAbsolute Differences (SAD) maps are pre-
sented in Figure 2, to illustrate the growing of the local
minima problem in high definition videos. Figure 2 pres-
ents SAD maps for a search area in the sun_flower video.
Each map represents the same region of the frame, with
different number of pixels. Figure 2 (a), (b), (c), (d) and
(e) represents the SAD maps for the resolutions 144p,
UMD 272p, EDTV 480p, HD 720p and HD 1080p,
respectively. The HD 720p map is very similar to the HD
1080p map because they are high resolution images. The
images represents the SAD magnitude for 16x16 blocks,
where dark blue represents lower SAD values, and light
orange represents higher SAD values.

In Figure 2 (a) is possible to see that good SAD
results can be achieved around the center of the search
area. Figure 2 shows that, for higher resolution video,
new regions with good SAD results can be found, beyond
the central region. This is an evidence of the increasing of
local minima with the increasing of video resolution.
More dark regions can be seen in Figure 2 (c), however,
in Figure 2 (a), (b) and (c) the global minima can be visu-
ally identified. The SAD map for HD 720p and HD
1080p resolution, presented in Figure 2(d) and Figure
2(e), show many dark blue regions, and it is impossible to
visually identify the global minima.

The analysis of the images presented in Figure 2
can explain the results presented in Figure 1. Both DS
and FS algorithms choose similar candidate blocks (or
even the same) at low resolution videos. As presented in
Figure 2 (a), there are only a few candidate blocks with
good SAD results in a low resolution video, and all
around the center of the search area. Even if the DS do
not reach the optimal candidate block, it will choose a
closer block with similar SAD value (average difference
of 0.19dB). For high resolution videos, like HD 1080p,
the higher number of local minima significantly increas-
es the differences between PSNR results for DS and FS
algorithms (more than 3.4dB).

For a better analysis about local minima, Figure 3
presents the Sum of Absolute Differences (SAD) for
every candidate block in a search area of 128x128 pixels
in the HD 1080p sun_flower sequence. This picture rep-
resents a 3D view of the SAD magnitude for blocks of
16x16 pixels, where valleys represent lower SAD values,
and peaks represent higher SAD values.

In Figure 3 is also possible to see that there are
many peaks and valleys in this search area. The global
minimum is the valley with lower SAD. This scenario is
different for low resolution videos, where the number of
peaks and valleys are much lower than presented in
Figure 3. Fast iterative algorithms (DS for example) are
unable to transpose some peaks around the center to
achieve a global minimum beyond. Fast algorithms are
easily trapped in local minima around the center of the
search area.

39Journal Integrated Circuits and Systems 2012; v.7 / n.1:37-46

Figure 2. SAD maps for sun_flower with different resolutions.

04(52)-AF:Modelo-AF 8/21/12 7:32 PM Page 39



New Motion Estimation Algorithms and its VLSI Architectures for Real Time High Definition Video Coding
Sanchez, Porto, Noble, Bampi & Agostini

Due to the FS algorithms complexity, its imple-
mentation for high definition videos is very computation-
ally expensive. The performance requirements to achieve
real time processing in this kind of video are extremely
high, and hardware solutions for FS algorithms must
explore massive parallelism, increasing the hardware
resources utilization and also power consumption.

The development of new fast ME algorithms,
focused in high definition videos, are very important to
achieve good trade-off between quality and computational
cost. The hardware implementation is also very important,
mainly for real time applications on portable devices. Fast
algorithms must be easily implemented in hardware, trans-
lating its computational cost reduction to hardware
resources reduction, and also power saving.

3. MPDS AND DMPDS ALGORITHMS

The MPDS and DMPDS algorithms use a multi-
point strategy that focus on avoiding from local minima
falls. These algorithms start the search in multiples points
in the search area, providing the algorithms the possibili-
ty to transpose a local minimum near to the center of the
search area. This strategy helps the algorithm to find a
result near the global minimum.

The MPDS search algorithm uses the search
engine of DS algorithm. However, the search is not made
only at the center of the search area. The MPDS algo-
rithm finds the best matching in five different positions of
a search area. Each position, except the central one, is
defined inside of a sector (A, B, C and D), as presented in
Figure 4. The MPDS is not restricted to only one start
point, exactly to avoid the same local minimum, which
the DS would reach. Then the MPDS defines five differ-
ent start points and five independent DS cores are trig-
gered in the same search area. In the worst case, the

MPDS algorithm will reach the same result than the DS
algorithm.

The main idea in MPDS algorithm is to not be
restricted to local minima around the center, but it is
important to keep the video motion characteristics. The
central DS is responsible to achieve a high quality when
low motion videos are being encoded, because the best
block match should be near the center. Inserting 4 DS in
a distant area around the center is the MPDS approach to
deal with high motion video sequences by evading from
the central local minima, when the normal DS would
reach low quality results.

The pseudo code below describes the MPDS algo-
rithm:

1. Define d
2. Frame <= 0
3. Block <= 0
4. Repeat
5. Repeat
6. SAD_zero <= Execute_DS(0, 0)
7. SAD_A <= Execute_DS(d, d)
8. SAD_B <= Execute_DS(-d, d)
9. SAD_C <= Execute_DS(-d, -d)
10. SAD_D <= Execute_DS(d, -d)
11. Lowest_SAD <= Min(SAD_zero, SAD_A,

SAD_B, SAD_C, SAD_D)
12. Generate_Vector (Lowest_SAD)
13. Block ++
14. While (Block < Max_Blocks)
15. Frame ++
16. While (Frame < Max_Frames)

Figure 4 describes the search positions of MPDS
algorithm. Each initial search point is defined by its coordi-
nates inside the sector. The point (0,0) is the central position
and it will obtain the same vector than the DS algorithm.
The search in the sectorsA, B, C and Dwill be done accord-
ing the distance parameter d. The d parameter is the dis-
tance (number of samples in X and Y axis) from the central
point (0,0). The sector A, B, C and D starts searching
respectively at positions (d,d), (-d,d), (-d,-d) and (d,-d).
When the search ends the MPDS algorithm selects the best
result from the five applied diamonds.

The MPDS results are directly influenced by the
value of d parameter. For low motion activity videos, the
MPDS algorithm can achieve good results with low d
values, since good candidate blocks can be found near to
the center of the search area. On the other hand, high
motion activity videos can be benefited by higher d val-
ues. Figure 5 shows the PSNR curves for MPDS algo-
rithm with each one of the ten used test video sequences
cited before. The curves were generated considering the
variation of d parameter value, from zero (same result
than DS algorithm) to 40, considering 8x8 block sizes.

Through the analysis of the Figure 5 it is possible
to notice how the MPDS algorithm responds to the d

40 Journal Integrated Circuits and Systems 2012; v.7 / n.1:37-46

Figure 3. 3D SAD map for sun_flower sequence in HD 1080p.

04(52)-AF:Modelo-AF 8/21/12 7:32 PM Page 40



New Motion Estimation Algorithms and its VLSI Architectures for Real Time High Definition Video Coding
Sanchez, Porto, Noble, Bampi & Agostini

parameter variation for different kind of motion activity
videos. For low motion activity videos, as blue_sky, the
MPDS algorithm can reach the best results with d=5, with
more than 6dB gain in comparison to DS algorithm. For
pedestrian_area sequence, for example, the MPDS reach-
es its best result for d=20, with a PSNR gain superior to
4.5dB in relation to DS.

The same experiment was made for 16x16 block
sizes (focus of this work), to identify the d value that
maximize the average results of MPDS algorithm (con-
sidering the ten sequences). Using d=10 the MPDS algo-
rithm can achieve the best average gain in comparison to
DS algorithm (1.69dB). This was the used value for d
parameter in the rest for MPDS.

As it is possible to see from Figure 5, the optimum
value of d depends a lot on the sequence being processed,
which has a significant impact on digital video quality.
However, the MPDS only allows the use of a static d
parameter for all frames in the video sequence. The
DMPDS algorithm is an evolution of the MPDS, where
the d parameter value can be dynamically adapted. Thus,

it is possible to achieve better quality with the variation
of the d parameter value during the execution, according
to the video characteristics.

The variations of the d parameter are influenced
by the characteristic of the current scene. For a low
motion activity scene, the d parameter value can be
dynamically reduced, resulting in better quality results. If
the characteristic changes, and the motion activity is
increased, the d parameter value can be dynamically
increased. This dynamic adjustment enhances the robust-
ness of the algorithm to deal with any kind of video
sequences.

The algorithm to define the d parameter is pre-
sented in Figure 6. Firstly, an initial d value and a dynam-
ic variation (∆) are set. The first frame is processed with
original d parameter, the second frame with d1 = d - ∆
and the third one with d2 = d + ∆. The frame that obtains
the lowest SAD becomes the new d and the dynamic vari-
ation (∆) is divided by two. This process is repeated until
the dynamic variation reach the value 1, when the oscil-
lation becomes 1 until the algorithm is reset. This tech-
nique tries to dynamically adapt the optimal d value for
each frame. The DMPDS starts with the same value as
MPDS for d parameter (d = 10), and ∆ = 5.

41Journal Integrated Circuits and Systems 2012; v.7 / n.1:37-46

Figure 4. MPDS search in five regions of the search area.

Figure 5. Variation of d parameter for MPDS algorithm.

Figure 6. Dynamic control of the d parameter in the DMPDS
algorithm.

It is important to notice that the MPDS and
DMPDS algorithms could be executed in parallel or in a
sequential fashion. Each sector can execute its search
independently and in parallel with the other sectors.
These algorithms were developed focusing on the quality
of the results generated by the ME process, so both
implementations, parallel or sequential, could be used
since the quality results will be the same.

04(52)-AF:Modelo-AF 8/21/12 7:32 PM Page 41



New Motion Estimation Algorithms and its VLSI Architectures for Real Time High Definition Video Coding
Sanchez, Porto, Noble, Bampi & Agostini

The MPDS and DMPDS algorithms are efficient
solutions to be executed in processors with support to
multi-thread or multi-core, exploring parallel program-
ming features. It is possible because each DS core does
not have any data dependencies with the others, so it is
possible to perform all of them in parallel.

A. Software Evaluation

The average results (considering the first 200
frames of the ten test sequences) for quality and compu-
tational cost of MPDS and DMPDS algorithms with
16x16 block size are presented in Table I, where results
for the traditional DS algorithm and the FS are also pre-
sented. All results in Table I considered the SAD as the
similarity criterion. The computational cost is showed in
number of Evaluated Candidate Blocks (ECB).

Comparing the MPDS algorithm to DS, it is
possible to achieve an average gain of 1.73 dB, with an
increase of six times in the computational cost. The
best MPDS results comparing to DS is achieved in
Traffic sequence. In this sequence the MPDS achieves
a gain of 3.95 dB with an increase of 5.4 times in the
computational cost. The worst MPDS results, in com-
parison to DS, is achieved in station2 sequence. In this
case, it was possible to achieve a gain of 0.63 dB with
an increase of 6.5 times the computational cost. This
result was obtained because this video does not present
much motion activity, and good vectors can be found
around the center, making the DS quality near the
MPDS.

Comparing to FS, the MPDS presents an average
quality loss of 1.15 dB, however, it reduces the complex-
ity by more than 47 times. The best case comparing to FS
is achieved in rush_hour, when the MPDS losses is only
0.31dB with a reduction in complexity of 47.2 times.

The DMPDS achieves an average gain of 0.12 dB
in comparison with MPDS, which was expected because
of the dynamic model insert in the d parameter. The
DMPDS computational cost increasing in only about 3%
when compared to MPDS, which is a good trade-off

between video quality and complexity. The best DMPDS
result is achieved in the blue_sky video, with a gain of
0.5dB over the MPDS, and also with a lower number of
comparisons. The best d value for the blue_sky video in
MPDS algorithm is five, as presented in Figure 5. So, the
DMPDS algorithm can reach this value in two steps, gen-
erating best results with lower comparisons, while the
MPDS algorithm is using a static d=10.

The worst result for DMPDS algorithm was
achieved at Traffic sequence, with a loss of 0.24 dB in
relation to MPDS. This decrease in the video quality hap-
pened because the d parameter did not get sufficient time
to adapt itself to the video characteristic, while in MPDS
the d got a static, however, good value. Probably, for a
higher number of encoding frames, the DMPDS would
achieve a better quality than MPDS, because it would get
adapt to the video characteristic.

The DS algorithm does not have any limitation in
the number of iterations. This is a problem if we want to
design this algorithm in hardware, since the number of
iterations, and consequently the number of clock cycles,
are non deterministic. Results targeting hardware imple-
mentation, considering the restriction in the number of
iterations, are presented in Table II. In this case, the eval-
uation considers five and eleven iterations restriction for
MPDS, DMPDS and DS algorithms. Same restriction is
used in the hardware architecture design presented in
next section.

42 Journal Integrated Circuits and Systems 2012; v.7 / n.1:37-46

Table I. Average Results for DS, MPDS, DMPDS and FS.

Video DS MPDS DMPDS FS
PSNR #ECB PSNR #ECB PSNR #ECB PSNR #ECB
(dB) (x109) (dB) (x109) (dB) (x109) (dB) (x109)

blue_sky 30.38 0.04 33.23 0.27 33.73 0.24 34.51 14.66
man_in_car 38.15 0.03 39.41 0.22 39.60 0.24 40.34 14.66
pedestrian_area 32.56 0.05 35.05 0.33 35.25 0.34 36.15 14.66
Riverbed 24.61 0.06 26.48 0.35 26.86 0.36 27.88 14.66
rolling_tomatoes 37.76 0.03 38.27 0.25 38.32 0.28 38.65 14.66
rush_hour 36.70 0.03 37.29 0.31 37.28 0.36 37.60 14.66
station2 38.00 0.04 38.39 0.26 38.50 0.22 38.80 14.66
Sunflower 37.31 0.05 38.68 0.37 38.53 0.43 39.11 14.66
Traffic 25.10 0.06 29.05 0.38 28.81 0.39 33.38 14.66
Tractor 29.65 0.07 31.69 0.35 31.85 0.33 32.54 14.66
Average 33.02 0.05 34.75 0.31 34.87 0.32 35.90 14.66

Table II. Average Results for MPDS, DMPDS and DS.

Algorithm PSNR #ECB SADS
(dB) (x109) (x109)

DMPDS 34.87 0.32 81.55
MPDS 34.75 0.31 78.72
DS 33.02 0.05 12.33
DMPDS 4:1 34.65 0.30 19.29
MPDS 4:1 34.51 0.29 18.56
DS 4:1 32.76 0.05 2.97
DMPDS 4:1 5 iter. 33.67 0.24 15.54
MPDS 4:1 5 iter. 33.28 0.22 14.59
DS 4:1 5 iter. 31.42 0.04 2.64
MPDS 4:1 11 iter. 34.19 0.27 17.72
DS 4:1 11 iter. 32.43 0.04 2.89

04(52)-AF:Modelo-AF 8/21/12 7:32 PM Page 42



New Motion Estimation Algorithms and its VLSI Architectures for Real Time High Definition Video Coding
Sanchez, Porto, Noble, Bampi & Agostini

Table II also presents the evaluation considering
the use of 4:1 pixel sub-sampling. This is a useful tech-
nique to reduce the number of calculations with low
impact in the quality results, which can be seen in the
SADs column, which presents the SADs calculations.
The use of pixel sub-sampling is an interesting strategy,
especially for hardware implementation, since the inter-
nal memory and processing unities can be reduced. The
MPDS and DS also have been evaluated for 11 iterations.

The PSNR gain of DMPDS algorithm over DS
and MPDS increases when the iterations restrictions are
considered. The increase in the number of comparisons is
reduced in this scenario. The DMPDS PSNR gain over
DS can reach 2.25dB considering the 4:1 subsampling
and the restriction of five iterations. In this case, the num-
ber of comparisons calculations is six times higher for the
DMPDS when compared to DS. If no iteration restriction
neither subsampling is considered, the DMPDS PSNR
gain is of 1.85 dB and the number of comparison calcu-
lations is 6.5 times higher than DS.

4. DESIGNED ARCHITECTURES

The MPDS and DMPDS architectures work with
16x16 blocks, and uses 4:1 pixels sub-sampling. An
architecture was designed to perform the DS algorithm
and it was used as ME core to implement the MPDS and
DMPDS algorithms. Each DS core is restricted to five
iterations. The DMPDS architecture is strongly based on
the MPDS architecture. MPDS and DMPDS architec-
tures performance is focused on real time processing for
HD 1080p and QFHD videos, with low area cost and low
power consumption.

Two versions of the MPDS architecture were
implemented, one considering eleven and other consider-
ing five iterations restriction. These versions are very
similar, since there are differences only in the control
unit. The difference in the number of iterations impacts in
the architecture processing rate, since more iterations
imply in more clock cycles to generate a motion vector.
The first version (with 5 iterations) was modified to
implement the DMPDS architecture.

Figure 7 presents the block diagram of DS core
architecture. The architecture must fill the reference
memory and current memory in advance to start the
search process. The reference memory size is 34x34
bytes, which contains the data for the first LDSP (Large
Diamond Search Pattern), 5 LDSP iterations and the data
for the final refinement (SDSP – Small Diamond Search
Pattern). This size was choose because the 5 iterations DS
will need only to access the main memory once to fill
with the data for all iterations and the 11 iterations DS
must access the main memory only twice to fill with data
for all iterations.

The DS core needs 34 cycles to fill its internal
memory. To optimize the architecture performance, the

necessary data for the first LDSP is firstly loaded from
the external memory. Then, the datapath starts to work
while the reference memory is fed with data for next iter-
ations. The datapath finishes the first LDSP before the
reference memory is fully fed.

When the reference memory is filled with data for
the first LDSP, the 13 local memories (presented in
Figure 7) will be filled, each one with a candidate block
(9 for the first LDSP and 4 for the SDSP). The local
memories MEM 1 to MEM 9 contain the data used for
SAD calculation for the LDSP. Memories from MEM A
to MEM D contain the data for the SDSP processing.
When the algorithm decides to start the SDSP, the candi-
date blocks are still available in MEM A to MEM D.
There is no additional memory latency to perform the
SDSP step.

43Journal Integrated Circuits and Systems 2012; v.7 / n.1:37-46

Figure 7. Block diagram of the DS core architecture.

The DS core architecture uses nine processing units
(PU), one for each candidate block of the LDSP. Then, the
nine blocks of the LDSP can be processed in parallel. To
reduce the hardware consumption, four PUs are also used
to calculate the SDSP. The PU was designed in a pipeline
of five stages and it is basically an adder tree to calculate
the SAD. The PU is able to process 2 lines per cycle.

The comparator sends the best block to the position
controller in Figure 7. Which is responsible to update the
new position of this block, since this is necessary to gener-
ate the motion vector. If the best candidate block is found
in the center (PU 5), the SDSP is triggered and the position
controller SDSP in Figure 7 will generate the final motion
vector for this block in this DS core. When the best match
is not found in the center, the architecture starts to process
a new iteration. However there is no memory latency, since
reference memory was previously loaded with the data for
five iterations. In the worst case scenario, this core gener-
ates a motion vector in 169 clock cycles. This occurs when
the core needs to perform all the five iterations. For the
eleven iteration case, the architecture process the five iter-
ations in the same way and then is fed again with data for
the next 6 iterations, and process again this iterations in
169 clock cycles.

04(52)-AF:Modelo-AF 8/21/12 7:32 PM Page 43



New Motion Estimation Algorithms and its VLSI Architectures for Real Time High Definition Video Coding
Sanchez, Porto, Noble, Bampi & Agostini

The block diagram of the MPDS and DMPDS
architectures is presented in Figure 8. Both architectures
use the same architectural template. Each core in Figure
8 is composed by one DS architecture presented in Figure
7. The comparator in Figure 8 is responsible to find the
best SAD among the best SADs of the five cores. At the
beginning, the architecture starts to fill the reference
memory of core 0 (the central one). As soon as core 0
internal memory is completely filled, the architecture
continues to fill the next core, while core 0 starts its
search. This process is repeated until the reference mem-
ory of core D is completely filled.

lowest SAD and the dynamic parameter ∆ is divided by
2. This process is repeated with the new d and the new
dynamic parameter is equal to 1. The variation of the d
parameter becomes ±1 pixel until the architecture is reset.

Figure 9 shows a time diagram of the proposed archi-
tectures. The second version of MPDS architecture needs to
update the referencememories of all cores to perform eleven
iterations. After every core finishes its processing, then the
core 0 starts to be fed with data for the next six iterations.As
this version needs to feed twice the internal memories cores,
it generates a motion vector at every 340 cycles. The laten-
cy for the generation of the first vector is 479 cycles.

Both versions of the MPDS architecture and
DMPDS architecture are able to maintain the cores oper-
ating during almost all clock cycles and almost no wast-
ing time is necessary to allow the data fed for the archi-
tecture, each core is processing almost 99.5% of time.
Then, these solutions can efficiently explore the used
hardware for a high performance operation.

44 Journal Integrated Circuits and Systems 2012; v.7 / n.1:37-46

Figure 8. Block diagram of the MPDS architecture.

The first version of MPDS architecture can store
the data for its five iterations in its internal memories.
When the core D finished being filled, the architecture
automatically starts to fill again the core 0, with data for
the next motion vector generation. Both architectures
have a memory latency of 170 cycles to fill all cores ref-
erence memories. More 135 cycles are necessary to the
core D finishes its processing, and three more cycles are
necessary to find the best result among all cores. The first
vector needs 309 cycles to be generated, after that, only
170 cycles is needed to generate a new motion vector. It
happens because when the first vector is ready, the cores
0, A, B and C are already working on the next block. The
DMPDS architecture can generate a motion vector with
the same number of clock cycles, since there is no laten-
cy for the d parameter generation.

The only difference from the DMPDS to MPDS
architecture is in the “d” generator block. This block is
presented only in the DMPDS architecture, and is com-
posed of a state machine based on Figure 6. The start
value of the dynamic parameter ∆ is 5 and the start value
of d is 10. The DMPDS architecture starts the process on
frame one with d = 10. The second frame is processed
with d = 5, and the third one is processed with d = 15.
Then the d is updated with the value that obtained the

Figure. 9. Time diagram of the proposed architecture.

5. RESULTS AND COMPARISONS

Our two versions of the MPDS architectures were
described in VHDL and synthesized to EP4S40G2F40I2
Altera Stratix 4 FPGAand for TSMC 90nm standard cells
technology. The synthesis results of the MPDS architec-
ture version 1 (V. 1) and version 2 (V. 2) are presented in
Table III. The DMPDS architecture was described in
VHDL and synthesized only to Altera Stratix 4 FPGA.

The ASIC synthesis considers the minimum oper-
ational frequency to process 30 HD 1080p frames per
second, and also 30 frames QFHD per second for the
MPDS V. 1 architecture.

Both versions of MPDS have very similar area
resources utilization and the same memory bits usage.
The main differences are in the achieved performance
and power consumption. The MPDS architecture V. 1 can
achieve a higher operating frequency for FPGAsynthesis,
and can achieve real time processing for HD 1080p
videos with only 41.3MHz. The MPDS V. 2 needs the
double of this frequency to process 30 HD 1080p frames
per second, since more iterations are allowed in the same
hardware. The performance results consider the worse
case, when every core uses all the available iterations
(five in V. 1 and 11 in V. 2).

04(52)-AF:Modelo-AF 8/21/12 7:32 PM Page 44



New Motion Estimation Algorithms and its VLSI Architectures for Real Time High Definition Video Coding
Sanchez, Porto, Noble, Bampi & Agostini

The power results were obtained only from the
ASIC synthesis. Synopsys tool was used to the synthesis.
Due to the low operating frequency and the 90nm tech-
nology, the V. 1 of the MPDS architecture can process
real time HD 1080p videos consuming only 4.5mW. The
power consumption of version two is about the double,
since this version needs an operating frequency twice
times higher than V. 1. The MPDS V. 1 architecture has
also been synthesized with a frequency capable to
process QFHD videos in real time, and obtained the same
area results with only 18mW of power consumption.

The DMPDS iteration limit is 5 iterations per DS.
Comparing the MPDS to DMPDS results in FPGA, the
DMPDS uses almost the same hardware resources and
achieves a lower maximum frequency. On other hand, the
DMPDS is able to achieve a better digital video quality.
ASIC synthesis of DMPDS architecture would achieve sim-
ilar power consummation and area utilization asMPDSV. 1.

Table III also presents results for related works [6],
[7], [8], [9], [10] and [11]. The work [6] proposes fraction-
al motion estimation (FME) algorithm with variable block
size motion estimation. Comparing to [6], our solutions can
achieve real time for HD 1080p videos with lower frequen-
cies. This performance gain could be achieved with the
efficiency of the proposed algorithms and a larger internal
memory. Comparing the area and power results, the MPDS
and DMPDS architectures use much less hardware than [6]
and the power consumption is much lower.

The work [7] performs ME with the Dynamic
Variable Step Search (DVSS) fast algorithm. The architec-
ture in [7] uses the same block size of our architecture and
at 130MHz it is able to process 34.3 HD 1080p frames per
second. Again, our architectures need a lower frequency to
process the same resolution. Comparing our FPGA synthe-
sis results, the architecture presented in [7] needs less hard-
ware and internal memory than MPDS and DMPDS.
However, our solutions can achieve a higher operation fre-
quency, and a considerably higher frame rate.

The architecture presented in [8] performs the
Hexagon Based-Search (HEXBS), Block Based Gradient
Descent Search (BBGDS) and Three Step Search (TSS)

algorithms. This architecture needs 390, 437 and 680
cycles to process one block, for each algorithm, respec-
tively. The MPDS and DMPDS architectures can process
one block using fewer cycles, comparing to any configu-
ration of the architecture presented in [8]. Comparing the
power and area results, our works needs more hardware
resources, however, it spends much less power.

The work [9] presents a hardware architecture for
the Fast Top-Winners Search Algorithm. This architecture
uses about half hardware resources and less memory bits, in
comparison with our solutions. However this architecture
does not reach real time for HD 1080p videos.

The architecture presented in [10] uses Multi-
Resolution ME Algorithm (MMEA). This solution uses
much more hardware resources, since it considers two
reference frames in the ME process. It needs a much
higher operational frequency to achieve similar perform-
ance than our solutions. The power results are not pre-
sented, however, it seems to be higher than ours, due to
its higher frequency.

The work [11] presents the Adaptive True Motion
Estimation Algorithm (ATME) and it also uses techniques
for FrameRate Up-Conversion (FRUP). It also evaluates the
algorithm for HD 1080p videos. Comparing to [11], our
solutions use almost the same hardware resources, but [11]
processes a 16x16 block in 104 cycles, which is less cycles
than our architecture. However, our architecture reaches a
better operating frequency, which is responsible to increase
this work processing rate in comparison with [11].

It is difficult to compare the quality results among
the related works, since almost none of them except [11]
evaluate their algorithms and architectures for HD 1080p
videos. However, [6-10] do not mention any alternative
to avoid local minima falls, so probably these architec-
tures will process high resolution videos with a worst
quality if compared with our work.

Our solutions obtained the lowest power among
all presented architectures for the ASIC synthesis. The
MPDS V.1 (ASIC and FPGA) and DMPDS architectures
are the only ones with sufficient performance for real
time processing in QFHD videos.

45Journal Integrated Circuits and Systems 2012; v.7 / n.1:37-46

Table III. Synthesis results and comparisons.

Architecture Technology Frequency Cycles per AREA Memory Power HD QFHD
(MHz) Block 1080p (fps) bits (K) (mW) (fps)

Kao [6] 180nm 154 631 321 KGates 9.72 374 30 7.5
Tasdizen [7] Virtex 5 130 467 2282 KCLBs 0.51 n.a. 34 8.5
Vanne [7] 130nm 200 390 / 437 / 680 14 KGates 2.5 59 63 / 56 / 36 15.75 /14 / 9
Lai [8] 180nm 83.3 1282 26 KGates 28.7 60.84 8 2
Yin [10] 180nm 200 872 260 KGates 11.3 n.a. 28 7
Cetin [11] FPGA 90nm 63 104 (average) 33 KLUTS 8 dual-port n.a 74.7 18.7

block RAM
MPDS V. 1 90nm 41.3 170 50 KGates 82 4.5 30 -
MPDS V. 1 90nm 165.2 170 50 KGates 82 18 - 30
MPDS V. 1 Stratix 4 199.2 170 34.5 KALUTs 46.2 n.a. 144.6 36.2
MPDS V. 2 90nm 82.6 340 50 KGates 82 9 30 -
MPDS V. 2 Stratix 4 185.2 340 34.5 KALUTs 46.2 n.a. 67 16,75
DMPDS Stratix 4 187.58 170 34.5 KALUTS 46.2 n.a 136 34

04(52)-AF:Modelo-AF 8/21/12 7:32 PM Page 45



New Motion Estimation Algorithms and its VLSI Architectures for Real Time High Definition Video Coding
Sanchez, Porto, Noble, Bampi & Agostini

6. CONCLUSIONS

This paper presented two new motion estimation
algorithms and the respective hardware architecture for
high definition videos. These architectures performs the
MPDS and for the DMPDS algorithms. These algorithms
were developed focused on high definition videos, and
are more resilient to local minima falls than traditional
fast ME algorithms, increasing the quality results. Two
versions of the MPDS architecture were presented: one
focusing on high performance, and other focusing in
quality improvements. Both architectures were synthe-
sized for Stratix 4 FPGA and 90nm standard cells tech-
nology. The synthesis results show that both solutions are
able to process real time HD 1080p videos with low oper-
ation frequencies and low power. The MPDS architec-
tures present the lowest power among all presented relat-
ed works, and can also work with QFHD videos in real
time. A DMPDS architecture was also developed and
synthesized for FPGA, with sufficient performance for
real time QFHD video processing. Our solutions are the
only among the related works that are able to achieve real
time processing QFHD videos.

REFERENCES

[1] JVT Editors (T. Wiegand, G. Sullivan, A. Luthra), Draft ITU-T
Recommendation and final draft international standard of
joint video specification (ITU-T Rec.H.264|ISO/IEC 14496-10
AVC), 2003.

[2] Cheng,Y. , et al. 2009. An H.264 Spatio-Temporal Hierarchical
Fast Motion Estimation Algorithm for High-Definition Video.
IEEE ISCAS, pp. 880-883, May 2009.

[3] I. Richardson, Video codec design: developing image and
video compression systems. Wiley, 2002.

[4] ZHU, S., MA, K. 2000. A New Diamond Search Algorithm for
Fast Block-Matching Motion Estimation. IEEE Transactions
on Image Processing, vol. 9, n. 2, pp. 287-290, Feb 2000.

[5] Xiph.org: Test media, available at <http://media.xiph.-
org/video/derf/>, Oct, 2011.

[6] Kao, C., et al. 2009. A High-Performance Three-Engine
Architecture for H.264/AVC Fractional Motion Estimation.
IEEE Transactions on Very Large Scale Integration Systems,
vol. 18, n. 4, pp. 662-666, April 2009.

[7] Tasdizen, O., et al. 2009. Dynamically variable step search
motion estimation algorithm and a dynamically reconfigurable
hardware for its implementation. IEEE Transactions on
Consumer Electronics, vol. 55, n. 3, pp. 1645-1653, Aug.
2009.

[8] Vanne, J., et al. 2009. A Configurable Motion Estimation
Architecture for Block-Matching Algorithms. IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 19, n. 4, pp. 446-476, April 2009.

[9] Lai, Y., et al. 2010. Hybrid Parallel Motion Estimation
Architecture Based on Fast Top-Winners Search Algorithm.
IEEE Transactions on Consumer Electronics, vol. 56, n. 3, pp.
1837-1842, Aug. 2010.

[10]Yin, H., et al. 2010. A Hardware-Efficient Multi-Resolution
Block Matching Algorithm and Its VLSI Architecture for High
Definition MPEG-Like Video Encoders. IEEE Transactions on
Circuits and Systems for Video Technology, vol. 20, n. 9, pp.
1242-1254, Sept. 2010.

[11]Cetin, M., et al. 2011.An Adaptive True Motion Estimation
Algorithm for Frame Rate Conversion of High Definition Video
and Its Hardware Implementations, IEEE Transactions on
Consumers Electronics, vol. 57, n. 2, May 2011.

46 Journal Integrated Circuits and Systems 2012; v.7 / n.1:37-46

04(52)-AF:Modelo-AF 8/21/12 7:32 PM Page 46


	Sumario e Rostos-2
	01(55)
	02(54)
	03(56)
	04(52)
	05(58)
	06(50)
	07(53)



