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1. INTRODUCTION

The architecture of anMPSoCmay be composed of
elements such as: PEs, memory elements and a communi-
cation infrastructure.According to [1], one of the most crit-
ical components that determine the success of an MPSoC
is its memory system. This assertion justifies itself by the
fact that applications might spend several cycles waiting
for the conclusion of a given memory operation.

One approach to decrease the gap of speed
between processing elements and memory elements, a
solution commonly applied in high-end microprocessors
is the use of static memories and the concept of memory
hierarchy. In general-purpose systems, there usually exist
four levels of memory: level 1 cache, level 2 cache, main
memory and secondary memory.

Cache memories can provide an acceptable data
rate to feed the processor, maximizing the number of
instructions that are executed in a certain period. Caches
work as temporary, fast access memories that prevent the
processors to sit idle while waiting for an instruction or
data from slower memories. Another interesting point in
the use of caches is the possibility of reducing energy
consumption. As most memory accesses are done locally
at the cache, transferring data on a bus/network-on-chip
from slower memories are avoided.

Despite the advantages, some problems related to
the use of cache memories must be addressed. According
to [2], data residing in a cache bank located near to the
processor could be accessed much faster than data that
reside in a bank physically farther from the processor.
The nearest processor’s cache bank, in a 16-megabyte,
on-chip L2 cache, built in a 50-nanometer process tech-
nology, could be accessed in 4 cycles, while an access to
the farthest cache bank might take 47 cycles. This differ-
ence is caused due to wire latency. Therefore, as the man-
ufacturing technology advances, the number of cycles to
retrieve data from further cache banks increases.
Additionally, the use of cache memories in MPSoCs cre-
ates the problem of cache incoherence. To avoid incoher-
ence, a cache coherence protocol must be implemented.

A. Motivation and Objectives

As the number of PEs increase [3], problems, such
as scalability, memory bandwidth, cache coherence and
data migration, found in high-performance computing
will also need to be studied in embedded devices. Other
problems that must be considered are: memory access
latency, once several processors can simultaneously issue
requests to the memory; energy consumption; memory
banks positioning inside the chip.
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These problems direct to the study of alternative
memory solutions for MPSoCs, to satisfy design con-
straints commonly applied in embedded systems, such as
memory access latency, power consumption, area, and
programming model (e.g. shared memory or message
passing).

The goal of the present work is to propose a phys-
ically distributed data L2 cache as the cache architecture
for a NoC-based MPSoC. NoC services, such as multi-
cast and priorities, and some properties of the NoC, such
as duplicated physical links, are used to optimize the
directory-based cache coherence protocol. Exposing the
low-level NoC services to the coherence protocol may
reduce the energy consumption and latency of the cache
accesses.

B. Document Organization

This paper is divided in 7 sections. Section II pres-
ents the state of the art in the field of memory architec-
ture and cache coherence for NoC-based MPSoCs.
Section III presents the platform used as reference for this
work. Section IV presents the shared memory architec-
tures developed for this work. Section V presents an opti-
mized cache coherence protocol. Section VI presents the
results. Finally, Section VII presents the conclusion.

2. STATE OF THE ART

This section presents state-of-the-art works in two
fields: memory architecture and cache coherence proto-
cols. These topics are separately presented because this
work proposes solutions for each field.

A. Memory Architecture

The shift from busses to NoCs influences the
memory architecture of a system because in NoCs differ-
ent requests to the memory may travel through different
routes. This leads to unordered access to the memory, as
well as variable latency due to the NoC load.

Kim et al. [4] affirms that the higher latency pre-
sented by routers in a NoC directly affects the way dis-
tributed shared memories are designed. The Authors pro-
pose a switch architecture for low-latency cache coher-
ence of a distributed shared memory MPSoC platform
denoted DCOS (Directory Cache On a Switch). The
memory system is physically distributed but logically
shared between PEs. The directory cache coherence pro-
tocol adopted is the modified-shared-invalidate (MSI).
The tests and evaluations of the DCOS architecture were
done using a modified version of the RSIM MPSoC sim-
ulator. The results show a substantial reduction on the
average read latency and execution time compared to a
platform in which directory caches are not embedded into
the switches. Although, according to the results presented

by the authors an important decrease in execution time is
obtained only when the directory contains 2048 entries.

Monchiero et al. [5] present a NoC-based MPSoC
composed by ARM7 PEs, memory elements and interrupt
controllers. The memory elements can be of two types:
shared memory banks or L2 caches. To access one of the
shared banks, a given PE must send a request to a unit that
is responsible for managing the sharedmemory, namedHW
Memory Management Unit (HWMMU). The authors sim-
ulated several scenarios varying parameters of the memory
architecture (number of shared memory banks) and NoC
topology (RING, SPIDERGONAND MESH). The results
showed that a decrease in latency is obtained with the
increase on the number of shared memory banks.Although,
for more than four memory banks the communication cost
overcomes the gains obtained from the increase of memory
banks. According to the authors, latency reduction is due
the decrease on the memory contention and the decrease of
transactions on the network.

Man et. al [6] discuss the problem of limited band-
width when using a unique, centralized Memory
Management Unit (MMU). As the number of PEs
increases, the number of memory references also tends to
increase, therefore the sequential structure of a central-
ized MMU can become the bottleneck of the system. To
tackle this problem, Man et al. proposes a distributed
MMU scheme, which takes several MMUs as resources
on the NoC to handle memory access requests. According
to the authors, with a proper number of MMUs and rea-
sonable network placement, this design would lower both
memory bandwidth requirements and NoC communica-
tion traffic. PEs are grouped into Translation-Sharing
Partitions (TSP). Each partition has: a set of PEs and a
MMU responsible of handling requests of the PEs
belonging to that partition. The problem with this
approach is that it limits a TSP to only one MMU.

B. Cache Coherence Protocols

According to [7], the reduction of both miss laten-
cy and traffic generated by the cache coherence protocol
are conflicting factors. Protocols designed to decrease
miss latency usually generate more network traffic than
protocols designed to consume low energy. The increase
in network traffic also increases power consumption [8].
This consumption might approach 50% of the overall
chip power in some cases. Considering that MPSoC
designs mainly target low energy consumption, there is a
necessity of the study and development of energy effi-
cient protocols.

Few works on the literature explore the physical
services, which are provided by NoCs to optimize the
cache coherence protocol. Examples of NoC-based
MPSoCs adopting memory hierarchy with caches
includes [9][10][11], having as common feature the
abstraction of the communication infrastructure, adopting
only send and receive services.
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Bolotin et al. [12] attributes different priorities to
packets transmitted by the cache coherence protocol.
Operations such as read and exclusivity request (short
data packets) are transmitted using high priority. Long
packets, such as packets containing data to be written in
the memory or a block just read from the memory are
transmitted using low priority. This strategy increases
performance, but does not addresses energy issues.

Barroso et al. [13] propose an invalidation-based
directory protocol, with some optimizations. One opti-
mization proposed is named clean-exclusive, in which an
exclusive copy is returned to a read if there are no sharers.
An important enhancement is that this protocol avoids the
use of NAK messages (negative acknowledgement). This
is possible due to the use of 3 virtual channels (I/O, L, H).
L channel is a low priority channel and H is a high priori-
ty channel. Also, to decrease the traffic in the network, a
technique called cruise-missile-invalidates is used for
sending a unique invalidation message to several nodes.

Jarger et al. [14] implement a cache-coherence
protocol, named Virtual Tree Coherence (VTC). It is
based on a virtual ordered interconnection tree, which
keeps a history of nodes sharing a common region of
memory. For each region, a virtual tree is created con-
taining the nodes that share that region. Every time one of
the nodes accesses a given region, a request is sent to the
root of the tree, which in turn, requests the data to the
node holding the most updated copy. This request is done
through a multicast message that traverses the tree. The
authors do not evaluate the size of the tree, which keeps
a history of the nodes sharing a common region, and not
discuss the energy gains when using the VTC protocol.

C. Conclusions on the state of the art

Most works adopt DSM (Distributed Shared
Memory) architecture for NoC-based MPSoCs, due to the
increasing number of PEs. Latency and contention are still
an open problem, even when more than one MMU is
employed. Data migration algorithms help reducing latency
by migrating data closer to the PEs mostly accessing them.
This fact may decrease the network contention as the traffic
tends to be restrained to a given region, which means that
different applications will use different regions of the chip.
Therefore, only enhancing the DSM architecture is not a
scalable solution.

The cache coherence protocol also plays an
important role as the system scales. This is because a sig-
nificant amount of traffic is required to enforce system
coherence, such as invalidate messages and write-backs.
To avoid huge traffic loads, the exploitation of NoC phys-
ical services is required in order to both reduce traffic,
latency and energy consumption.

Considering this discussion, this work proposes a
DSM architecture for a NoC-based MPSoC, which sup-
ports cache coherence. Data migration is out of the scope
of the present work.

3. HEMPS MPSOC

The HeMPS Platform [15], shown in Figure 1, is
a homogeneous MPSoC in which PEs are interconnected
through the Hermes NoC. Each PE contains a RISC
microprocessor, a local memory, a DMA controller, and a
Network Interface (NI). These modules are wrapped by
the Plasma-IP module, that is then connected to the NoC.
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Figure 1. HeMPS platform block diagram.

The following reasons justify the adoption of the
HeMPS platform: (i) all modules are implemented in RTL;
(ii) it adopts a NoC to interconnect PEs; (iii) it follows the
trends of the state of the art of embedded systems; (iv) it
has a framework that allows the parameterization of PEs,
application tasks and NoC; (v) it is open-source.

Next sections detail these modules. Additionally,
section F presents the microkernel and section K presents
the framework enabling the MPSoC generation.

A. Hermes QoS

An improved version of the Hermes NoC, named
Hermes QoS, was proposed in [16]. This version has mech-
anisms to provide QoS (Quality of Service), to reduce laten-
cy and energy consumption. Hermes QoS uses the
Hamiltonian routing algorithm, two physical channels, and
a priority scheme.According to [16], it is possible to define
several Hamiltonian paths on a bi-dimensional mesh by
labeling the routers from 0 to N-1, being N the number of
routers. After that, the network can be divided into two dis-
joint and acyclic sub-networks. One sub-network contains
the channels that go from the smallest label router to the
highest label router and the other contains the channels that
go from the highest label router to the smallest label router.
Thus, packets sent from a router labeled 0 targeting a router
labeled 3 will take the ascending path.

Hamiltonian paths provide a good support for
implementing efficient multicast/broadcast algorithms.
For example, multicast messages can be used by cache
coherence protocols when invalidation messages need to
be sent to all processors that are caching a given block.
Without multicast, an invalidation message would have
to be sent individually to all processors in the system,
increasing the number of transactions in the network, as
well as energy consumption and congestion. Thus, it is
possible to assert that the interconnection infrastructure
plays an important role on the design and implementation
of a cache coherence protocol.
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B. Plasma-IP

Plasma-IP is a modified version of an open-source
soft core, described in VHDL, freely obtained from
OpenCores [17]. It is a 32-bit RISC architecture, based
on the MIPS-I ISA (Instruction Set Architecture). The
most important modifications performed on the original
Plasma architecture are: insertion of a paging mecha-
nism; addition of a DMA module and a NI (Network
Interface). Concerning the instruction set, the Plasma
processor originally did not include the syscall instruc-
tion, which allows for user applications to ask the kernel
to perform low-level functions such as accessing I/O
devices or controlling an external memory. The syscall
instruction was added to the Plasma implementation.

C. Network Interface (NI)

The NI acts as a wrapper between the Plasma
processor and the NoC. It is responsible for adapting data
coming out from the processor to NoC standards. The
length of the data channel of the network is 16 bits (flit size).
The Plasma word is 32-bit wide. So, for every word sent
from the processor to the network, two flits are sent through
the NoC. The NI is responsible for breaking up words into
flits and re-assembling them at the receiving node.

The NI contains two finite-state machines: Receive
and Send. The Receivemachine is a 4-state machine respon-
sible for receiving data coming from the network and
buffering them (up to 16 32-bit words). Furthermore, this
machine is responsible for controlling the reading of data
from Plasma core. The Send machine is a 6-state machine
responsible for sending packets to the NoC. The contents of
the packets sent on the NI are fetched from memory by the
DMAmodule, described in the next subsection.

D. DMA

The DMAmodule executes two operations: trans-
fer of packets stored on memory to the NI and transfer of
incoming packets from NI to memory. DMA program-
ming is done inside the microkernel, whenever a new
interrupt event originated from the NI module is detected,
or when a packet must be sent to the NoC. The configu-
ration of the DMAmodule is done through a set of mem-
ory-mapped registers.

E. Memory System

Each Plasma-IP follows the Von-Neumann organ-
ization, having only one private memory that stores both
data and instructions. To allow simultaneous access from
DMA and processor, the private memory is a true dual-
port memory, implemented as a BRAM memory when
synthesized on a Xilinx FPGA. Section 4 presents a
shared cache architecture proposed to the HeMPS
Platform.

F. Microkernel

The microkernel running on Plasma processors is
a small operating system, whose main goal is manage
task execution on each core. The microkernel implements
a preemptive scheduler that allows applications to use the
CPU during a pre-defined period of time called timeslice.

Preemptive multitasking requires support from the
hardware, otherwise there might exist situations where it
is not possible to remove a given task from the CPU. The
PLASMA core provides a memory-mapped tick counter,
which is incremented by one at each clock cycle. The tick
counter generates an interrupt event when it reaches a
threshold.

Timeslice is defined as the time interval which a
task occupies the CPU. When the timeslice ends, an inter-
rupt is dispatched. This interrupt is handled by the interrupt
handler, which in turn, calls the scheduling algorithm,
which will select a new task to be executed on the CPU.

The microkernel has two versions: master and slave.
The master version runs on PLASMA master whose main
goal is to coordinate task mapping and manage their execu-
tion. The master does not execute any application task and
its memory footprint is about 4,3KB. The slave microkernel
runs on PLASMA slave and provides support to multitask-
ing and software interrupts (traps). The microkernel slave
occupies the initial pages of the memory.

G.Task allocation

The master PE, according to the task mapping
heuristic, performs task allocation on HeMPS Platform.
HeMPS Platform supports two types of task mappings,
static and dynamic.

Static mapping: the user defines, at design time, in
which Plasma-IP each task is going to be executed. When
the execution starts, tasks are sent to PEs according to the
user definition.

Dynamic mapping [18][19]: a dynamically allocat-
ed task is only transferred to the Plasma-IP that will exe-
cute it when another task in the system needs to send a
message to it. This situation works as follows: (i) a task Ti,
running on processor Pi needs to send a message to task Tj;
(ii) task Ti calls the send primitive, which requests the
microkernel to send the message; (iii) the microkernel
searches for task Tj location on its internal table, but the
task Tj has not been allocated yet; (iv) as the microkernel
do not find the location of task Tj, it sends a message to the
master requesting the allocation to be done.

H. Interrupts

Interrupts in the microkernel can be generated after
the occurrence of one of the following events: arrival of a
new packet at the NI; timeslice counter reaches up its limit,
indicating a new task must be allocated; and a call to the
syscall primitive (software interrupt – trap).
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I. Inter-task communication

Different tasks running on a distributed system
need to communicate in order to coordinate and synchro-
nize task execution. Inter-task communication inside the
processor is done through a memory area called pipe. A
pipe is a communication channel in which messages are
consumed at the same order they were produced. There
exists only one global pipe per processor that is shared
between all tasks.

According to the KPN communication model
[20], adopted by HeMPS microkernel, a channel read
operation must be blocking. Thus, when a ReadPipe()
instruction is executed, the task is blocked until it
receives the requested message from the pipe. At the
opposite, write operations must be non-blocking, which
means that after every WritePipe() operation, the task
keeps executing (in case the pipe is not full).

When a task wants to receive a message, a read
operation on the pipe occurs. Whenever a task wants to
send a message it executes a write operation (WritePipe()).
If both sending and receiving task are located at the same
processor, no message is sent through the network.
Although, in case tasks reside at different processors, a
packet is assembled and sent to the target task processor.
This process is shown in Figure 2, where in (a) task 2 (t2)
located at Processor 1 writes a message to task 5 (t5) on the
pipe and continues its execution. Subsequently, task 5
makes an explicit call to request_msg that sends a message
to Processor 1 requesting the reading of the pipe. Then, the
NI interrupts Processor 1 when the request arrives, and
sends a message (msg, Figure 2(b)) to processor 2 that
receives the message and unblocks task 2.

memory bus, it is necessary to concatenate the page ini-
tial address in memory with the address contained in
mem_address_wop. This mechanism prevents a given
task located at page 2, for instance, from accessing data
from a task located at a different page. An important con-
sideration is that this mechanism also prevents tasks from
accessing the kernel memory area, avoiding a crash
caused by a malicious user task.

K. HeMPS Generator

The HeMPS Generator is a framework that allows
the customization of an MPSoC system for simulation of
applications tasks. It is possible to parameterize: the num-
ber of PEs; the size of the NoC; the page size; the maxi-
mum number of tasks per processor; the abstraction level
of the PEs: ISS or RTL. Finally, the user can insert appli-
cation tasks and statically map them to PEs.

4. SHARED MEMORY ARCHITECTURE

This section details the architecture of the L2
cache module. This module is responsible for handling
requests, such as read and writes, from the L1 data cache.
Additionally, the L2 cache has support for a cache coher-
ence protocol. The L2 cache is connected to the NoC
through a NI, as shown in Figure 3. The L2 cache mod-
ule can be instantiated one or more times in a system,
resulting in a centralized or distributed shared L2 data
cache. The next subsections provide a detailed view of
the services supported by the L2 cache module and its
internal architecture. Next, examples of centralized and
distributed systems are presented. Finally, it is presented
the API that allows application tasks to manipulate data
from the cache structure.
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Figure 2. Intertask communication between tasks located at dif-
ferent processors.

J. Memory management

As already mentioned, each Plasma-IP contains a
private dual-port memory, which is divided into pages.
The first pages store the microkernel, and the subsequent
ones store user tasks. Each task is associated to a page
number, which is kept by a CPU internal register, denom-
inated page. Every memory address (mem_address_wop)
generated by memory controller (Mem_ctrl) of the
Plasma core does not includes the page, only the logical
offset inside it. Thus, before putting the address on the

Figure 3. Cache L2 Controller architecture.

A. Supported Services

The services supported by the current implemen-
tation of the L2 cache controller include:

• READ_BLOCK, returns a copy of a block;
• WRITE_BACK, writes the content of an entire
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block to the L2 cache;
• INVALIDATE_BLOCK, invalidates cache lines

at the L1 cache of PEs. This service is required
before granting exclusivity of write to a given PE;

• ASK_EXCLUSIVITY which is sent from a PE to
the L2 cache to get an exclusive copy of a given
cache line;

• GRANT_EXCLUSIVITY service where the L2
cache guarantees to only one PE the exclusive
right to modify a certain block;

• FLUSH_BLOCK that has the same effect that a
WRITE_BACK, but it is only used when an appli-
cation task finishes its execution.

B. L2 Cache Controller Architecture

The controller is divided in two main modules, as
illustrated in Figure 3: Network Interface (NI) and
Memory Controller (MC). The NI is responsible for inter-
facing the two physical links of the NoC. The use of two
separated ports to communicate with the NoC allows the
differentiation of cache requests. Short packets, such as
read requests, are addressed to port 0 of the NI, whilst long
packets, such as write-back packets are addressed to port 1.

Packets arriving at the NI are buffered in the
input_buffer (shown in Figure 3). Write-back packets are
partially buffered due to the limited size of the buffer.
Output ports are not buffered. As soon as the NI notices
that a new packet is being stored in its input buffer, it sig-
nalizes the arrival of a new packet to the MC through an
interrupt signal.

The MC is implemented based on two independent
FSM. FSM 1 is responsible for handling packets from port
0, which may contain services such as: READ_REQUEST,
ASK_EXCLUSIVITY, INVALIDATE_BLOCK, and
GRANT_ EXCLUSIVITY (described in Section V). FSM
2 is responsible for handling packets from port 1, which
may contain services such as WRITE_BACK and
FLUSH_BLOCK. The MCmaintains a centralized directo-
ry that stores, for each block, its status according to the
cache coherence protocol.

C. Message Exchange Default Format

The messages exchanged between PEs and the L2
cache controller follow the format shown in Figure 4. The
fields of this packet corresponds to:

• TargetNetAddr: network address of target PE;
• Size: packet size, in flits (each flit has 16 bits);
• Service: specifies the operation to be executed and

can be any of the services described in Section
4.A;

• SourceNetAddr: router network address of the
sender of the message;

• TargetBlock: address of the block where the oper-
ation will be performed;

• SourceTaskId: identifier of the application task
which triggered the operation;

• Payload: optional field, being 256-flit wide, with
the data of an entire block. It is only used in
WRITE_BACK and FLUSH_BLOCK services.
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Figure 4. Message format for communication with the L2 cache
controller.

D. L1 Cache Controller Architecture

The L1 cache module is located inside the Plasma
entity. It contains a cache controller, responsible for stor-
ing and retrieving cache lines, detect hits/misses and
manage the tag memory (TM). The TM stores, for each
cache line, the following information: tag address which
corresponds to the higher bits of the block address
mapped to a cache line; modified, which informs if the
cache line has been altered, valid, which informs if the
cache line is valid.

The cache adopts the direct mapping scheme, due
to the minimum hardware support required to implement
it. Each cache line stores a full block of the L2 cache,
which size is 128 32-bit words. The size of the cache line
was chosen based on the size of a pipe slot in the current
implementation of the HeMPS Platform.

E. Centralized L2 Data Cache

Figure 5 shows an MPSoC system with a central-
ized shared L2 data cache. All PEs of the system have
access to the L2 cache. This fact facilitates the develop-
ment of application tasks as the cache address space is
seen by all PEs. Although, a central L2 cache architecture
has two main negative points. First, the bandwidth
required by the L2 cache controller increases with the
increase of PEs. The cache can easily become a bottle-
neck of the system as the platform grows. Second, the
average distance of the PEs to the L2 cache controller
increases as the size of the system increases. An increase
in the average distance culminates in the increase of the
latency of the cache requests. Additionally, the energy
consumed by cache operations increases as the requests
must traverse a longer distance to get from a PE to the L2
cache and vice-versa.
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The L2 cache can be initialized at design time.
The HeMPS Generator allows the user to load a file with
initial values for each line of the cache for simulation
matters.

G. Programming API

This section details the cache programming API,
which provides access to the data cache structure at the
application level. This API is linked with the application
tasks and the operating system after compilation.

1. Functions description

• initialize_cache() – this function initializes the
cache structures, such as freeing all data structures
present in the kernel to manipulate the L1 data
cache. Also, it resets the bits of hit and tags of the
L1 cache controller.

• read_block_word(int block_addr, int word_offset)
– this function is responsible for performing the
process of reading a block from the data cache. As
the block being accessed might not be copied at
the L1 cache, firstly the function must verify if the
block is present at the L1 cache. If the block is not
present at the L1 cache, a READ_REQUESTmes-
sage is assembled and sent to the L2 cache con-
troller. The task is set to WAIT state until the L2
cache returns the block to the L1 cache.

• write_block_word(int block_addr, int word_offset,
int datum) – this function is responsible for per-
forming the write of a single datum to a single
word of a line present at the L1 cache. If the line
being accessed is not present at the L1 cache, the
procedure to retrieve the line is the same executed
during a read miss.

• flush_blocks() – this function flushes all lines
present at the L1 cache to the L2 cache. It is used
by the microkernel every time a given application
finishes in order to updating the L2 with the data
of the application. This function might also be
used for debugging purposes.

2. API usage in an example application

The application shown in Figure 7 is an example
application that calls functions of the Cache API. The
first call is to read_block_word function, which returns a
32-bit integer corresponding to the word of the block
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Figure 5. Example of an MPSoC with a centralized shared L2
data cache.

F. Distributed L2 Data Cache

Figure 6 shows an MPSoC with a distributed
shared L2 cache. In the literature it is commonly referred
as a Non-Uniform Cache Access (NUCA) system, due to
the fact that the access latency varies from PE to PE
because of the variable distance to the L2 cache banks.

The advantage of the distributed approach is that it
allows the concept of clustering, which allows applications
to be mapped to access one cache bank. In a system with
four L2 cache banks for example, the application tasks may
be divided so that each task accesses one L2 cache, decreas-
ing the bandwidth required for each bank and also decreas-
ing energy consumption and latency as the applications may
be mapped in PEs close to the bank that they are mostly
accessing. Another advantage of the distributed approach is
that it allows data migration.When an given application task
is mapped to a PE which is not close to the L2 bank that it
mostly accesses, the data migration algorithm may migrate
the data being mostly accessed by that PE to a closer bank,
decreasing latency and energy spent in communication.

Figure 6. Example of an MPSoC with distributed shared L2
cache banks. Figure 7. Example application that uses the cache API.
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being requested. This return can be casted to other type,
such as a char. Next, a call to the write_block_word is
performed, incrementing by one the value read previous-
ly. The call to the flush_blocks is not necessary in a real
application as the kernel calls this function automatically
at the end of each application task.

5. SHARED MEMORY ARCHITECTURE

This section presents a directory-based cache
coherence protocol implemented in the HeMPS Platform.
According to the MSI cache-coherence protocol, any
shared block can be in 3 states: modified – a copy of the
block has been modified, therefore the L2 cache does not
contain a valid entry of that block; shared – zero or sev-
eral caches might contain an identical copy of the block
which is stored in the L2 cache; invalid – block data is not
valid. In addition to the three states of the MSI protocol,
we propose the creation of the transition state. This state
indicates that a write back request has been issued to the
PE previously holding exclusivity on this block, but it has
not been written in the shared memory yet. The addition
of this state optimizes the coherence protocol, as
explained next.

Our work adopts a hybrid implementation of the
protocol, being part of it implemented in hardware (in the
cache controller) and part in software (in the microker-
nel). The cache controller is responsible for: (i) detecting
and signaling hit/miss when the address accessing the
cache changes; (ii) updating the tag memory; (iii) execut-
ing read and write operations. The microkernel is respon-
sible for: (i) exchanging messages with the shared mem-
ory; (ii) replacing blocks when necessary; (iii) handling
write-back operations.

A. Protocol optimizations

Most protocols, such as invalidate protocols, gener-
ate several unicast messages whenever a block needs to be
invalidated in several caches. This traffic increases signifi-
cantly the energy consumption introduced by the cache.
One way to minimize this overhead is to send multicast
messages to reduce the traffic induced by the invalidation.
Exposing the low-level NoC features may reduce the ener-
gy consumption and increase the performance of cache
coherence protocols for NoC-based MPSoCs. The next
subsections present individual optimizations applied to the
MSI protocol through the exploration of NoC physical serv-
ices. All control packets of the coherence protocol are sent
through the NoC using high priority packets, enabling their
fast transmission even in congested NoC regions.

1. Invalidating cache lines

Whenever a PE needs to modify a given block, the
L2 cache must invalidate all valid entries of this block to

prevent cache incoherence.An invalidation message is then
sent to every PE sharing this block. Finally, the L2 autho-
rizes the modification of the block by the requesting PE.

In unicast-only NoCs, a unicast packet must be
sent for each PE. Figure 8(a) shows a scenario where
PE01 requests exclusivity of a block, which is in shared
state. Two other PEs are currently holding a copy of this
block (PE02 and PE03). Therefore, an invalidation mes-
sage is sent to PE 02 and PE 03. Using unicast messages,
the traffic generated on the NoC in this case increases
according to the number of PEs sharing the block. Figure
8(b) shows a scenario where multicast is exploited. In this
case, the L2 cache issues a multicast message targeting
several processors, reducing network traffic. The traffic
reduction decreases the switching activity of the routers,
therefore reducing energy consumption.
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Figure 8. Sequence diagram for a request of exclusivity on a
shared block.

2. Read request optimization

The use of multicast messages might optimize a
read operation on a block that is in modified state. The
non-optimized operation occurs as shown in Figure 9(a).
After receiving the modified block from PE02 (event 3),
the L2 cache first writes the block into the memory bank,
and then sends a copy of it to the requesting PE (PE01).
In the optimized operation, the PE containing the modi-
fied block (PE02) sends a multicast message to both the
requesting PE (PE01) and the L2 cache.

3.Write request optimization

To write on a block, the processor must read it
beforehand. If the block that a given PE wants to modify

Figure 9. Sequence diagram for a read operation of a modified
block.
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is already in modified state, the PE holding the modified
copy must execute a write-back operation. Suppose PE01
wants to write on a modified block, only cached by PE02.
PE01 sends a read-with-exclusivity request to the L2
cache, which, in the non-optimized implementation
(Figure 10(a)), sends a write-back request to PE02. After
receiving the write-back response, the L2 cache sends a
copy of the block to PE01 and updates the directory.

When the L2 cache receives the write-back packet (event
5) it sets the block as shared.

Without the transition state, the standard coher-
ence protocol would have to buffer in the L2 cache the
read request from PE05 and wait for: (i) the arrival of the
write-back packet in the L2 cache; and (ii) the update of
the block in the L2 cache. In the proposed optimization,
the PE holding the modified block (PE03) sends the
block directly to PE05 just after finishing the write-back
operation. This optimization tends to reduce the number
of cycles required to send a copy of the block to the sec-
ond PE which requested the read, as it does not require
the read request to be block on the L2 cache until the fin-
ish of the write-back operation.
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Figure 10. Sequence diagram for a write-back after a write
request.

In the optimized implementation (Figure 10(b)),
after receiving the read-with-exclusivity request from
PE01, the L2 cache updates the directory, setting PE01 as
the holder of the modified copy of the block. Then, it
sends a special write-back to PE02, which will send a
copy of the block to PE01, and invalidate its copy of the
block. Additional requests for this block may arrive at the
L2 cache before finishing this operation. To ensure
sequential consistency, these operations must be blocked
at PE01 until it finishes the operation on this block.

4. The Transition State

The benefit of having a new state in the cache
coherence protocol is the possibility of decreasing laten-
cy. This is achieved by transferring memory requests to a
PE that also has an updated copy of the block being read.

Figure 11 presents a scenario illustrating the use of
the transition state. Suppose PE03 holds a given block in
modified state, and PE00 wants to read this block. A read
miss occurs, resulting in a read request to the L2 cache
(event 1 in Figure 11). The L2 cache upon receiving PE00’s
request, search in the directory the processor holding the
block in modified state, issuing a write-back request to
PE03 (event 2), setting the block from M (modified) to T
(transition) state. Next, PE05 also requests a read in the
same block (event 3). Instead of blocking the request of
PE05, the L2 cache issues a read request of this block to
PE03 (step 4), which sends a packet containing a copy of
the cached block stored in its cache (step 7).

This optimization is possible because, although
after writing-back the block to the L2 cache and PE00
(events 5 and 6), PE03 still has a valid copy of that block.
Therefore, it might serve a copy of the block to PE05.

Figure 11. Sequence diagram for the T state.

6. RESULTS

This section is divided into three subsections: the
first one presents results obtained with the optimizations
in the cache coherence protocol; the second one presents
results for mostly-read and mostly-write synthetic appli-
cations; finally, the third section presents results obtained
from two real applications.

A. Cache coherence protocol evaluation

Two different implementations of an MPSoC plat-
form were simulated in RTL-level using the ModelSim
simulator. The platform used as a case study is configured
as: 5x5 2-D NoC mesh topology, containing 24 PEs (1
master and 23 slaves) and 1 L2 cache bank. The first
implementation, named OPT, employs the four optimiza-
tions described in SectionA. The second implementation,
named NO-OPT, adopts a standard MSI directory-based
protocol based on unicast messages only. In all experi-
ments, the results evaluate the number of clock cycles,
and the energy spent in communication between the PEs
and the L2 cache. The packets containing memory oper-
ations are generated by application tasks.

To evaluate the consumed energy per memory
transaction, the present work adopts the volume-based
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energy model proposed by Hu et al. [21]. Equation 1
computes the communication energy spent to transit 1 bit
through a distance of n hops.

The experiments varied the distance, in hops,
between the PE reading the block and the L2 cache.
Figure 12 presents the results. The average energy redu-
ction offered by the optimization is 12%. However, the
NO-OPT implementation is slightly faster than the OPT
implementation (in average 30 clock cycles), due to the
higher complexity to treat multicast packets at each
router, and the non-minimal path taken by these packets.
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where: ESbit (20.58 pJ/flit), ELbit (2.84 pJ/flit) and

nhops correspond to the energy consumption of the router,
in the interconnection wires and the number of hops to
transmit 1 flit, respectively.

The energy model was calibrated using the
ST/IBM CMOS 65 nm technology at 1.0 V, adopting
clock-gating, 100 MHz clock frequency and injection rate
of 10% of the available link bandwidth. The PrimePower
tool generates the power and energy values used in
Equation 1.

1. Invalidating cache lines

In situations where more than one cache is sharing
the same block of the L2 cache, the memory controller
needs to send invalidation messages to invalidate these
copies before granting exclusivity to a PE. To evaluate the
benefits of using multicast to propagate these messages,
the number of caches sharing a copy of the same L2 block
varies. Table 1 shows the number of clock cycles required
to send invalidation messages to 3, 5 and 8 caches, respec-
tively. Although with a smaller number of targets to inval-
idate, the first scenario (3 caches sharing a block) presents
higher gain compared to the non-optimized implementa-
tion. This is due to the task mapping on the platform, which
allowed the sending of only one multicast message, signif-
icantly reducing the amount of data transmitted on the
NoC. For the other scenarios (5 and 8 caches sharing a
block), the use of multicast messages saves energy and
improves performance at most 17.53%.

Table 1. Number of clock cycles and energy consumption of
invalidate messages depending on the number of caches sharing
a block.

Platform 3 caches 5 caches 8 caches
Energy NO-OPT 1635 2584 3798
(pJ) OPT 685 2073 2916

OPT gain vs NO-OPT 58.07% 19.76% 23.20%
Clock NO-OPT 141 154 147
Cycles OPT 129 127 129

OPT gain vs NO-OPT 8.51% 17.53% 12.24%

2. Read request optimization

To evaluate the read optimization, a task after a
cache-miss, must issue a read request to a modified
block. Upon receiving the request, the L2 cache issues a
write-back request to the PE, which holds exclusivity on
the block being requested. In the OPT implementation,
after receiving the write-back request, the PE sends a
multicast message containing a copy of the block, both to
the L2 cache and to the requesting PE.

Figure 12. Energy consumption of the read operation on a mo-
dified block as the number of hops increases.

3.Write request optimization

To evaluate the write optimization, a task after a
write cache-miss, must issue a read with exclusivity
request to a modified block. Upon receiving the request,
the L2 cache issues a write-back request to the PE, which
holds the modified copy of the block being requested. In
the OPT implementation, after receiving the write-back
request, the PE sends a unicast message containing a
copy of the block, only to the requesting PE, bypassing
the L2 cache. To evaluate this optimization, the place-
ment of the L2 cache is defined in Figure 15(a). The PE
holding the modified copy of the block is fixed at PE00.
The evaluated scenarios varied the position of the block
writing in the cache.

Figure 13 shows that there is an average reduction
of 17% in the number of cycles required to finish the
write operation. Also, Figure 14 shows that there is a

Figure 13. Number of cycles required to execute a read opera-
tion on a modified block varying the location of the modified block.
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reduction of up to 86.8% on the energy spent during this
operation by the OPT implementation over the NO-OPT.
The reason of this significant reduction is that long mes-
sages, containing data blocks, are transmitted only once,
from PE to PE. The memory can be bypassed because its
copy of the block would be altered right after.

4. The Transition state

To evaluate the addition of the transition state, a
scenario where 2 PEs issue subsequent reads to a modi-
fied block of the L2 cache is analyzed (this optimization
was presented in Section 4). The first PE which issues a
read request will benefit from the Read request optimiza-
tion, whilst the second PE will benefit from the addition
of the T state. The NoC feature enabling this optimization
is the duplicated physical channels, because while the L2
cache controller monitors of the channels waiting for a
write-back packet, the other channel can receive requests,
such as a read request.

The results show that the gains against the standard
MSI protocol, in this case, are sensitive to the task and L2
cache mapping. In scenarios where the PE that issues the
second read request is closer to the PE previously holding
the modified copy of the block, there are gains both in per-
formance of the protocol (decrease in clock cycles) and
also a save on the energy spent during the operation. Figure
15(a) shows a scenario where PE18 holds the modified
copy of the block being accessed, PE10 is the second read-
er and the L2 cache is located at the upper left corner of the
platform. In this case, the second read operation consumes,
in the OPT version of the platform 19.035 pJ, against
42.893 for the NO-OPT version. This represents a 55%
decrease in energy consumption. The number of clock
cycles required is decreased by 7%.

In scenarios where the PE that issues the second
read request is closer to the L2 cache, the addition of the
T state increases the number of cycles, and the consumed
energy. In Figure 15(b), the second reader is mapped on
PE10, PE01 holds the modified copy being accessed and
the L2 cache is located at the upper left corner. For this
case, the energy consumed during this operation by the

OPT implementation is 37.583 pJ, against 30.621 for the
NO-OPT. It represents a 22% increase on the energy con-
sumed. The number of clock cycles is increased by 5%.

To reduce energy consumption for all scenarios,
this optimization must be activated dynamically accord-
ing to the task mapping. Upon receiving a read request, a
module of the L2 cache calculates the Manhattan dis-
tance between PEs (PE reading and PE holding the mod-
ified block) and L2 cache, and chooses if it is best to use
the T state optimization or block the request until finish-
ing the write-back operation for this block.
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Figure 14. Energy consumed to execute a read operation on a
modified block varying the location of the modified block.

Figure 15. Task mappings for the T state optimization.

B. Evaluation through access patterns

According to [22], the way that applications
access the memory can be classified in: mostly-read,
mostly-write and mixed. Applications are classified as
mostly-read when the majority of memory accesses are
reads; mostly-write when the majority of accesses are
writes; and mixed, where read and write operations occur
with the same probability. Considering the fact that in the
HeMPS Platform, before writing to a block of the cache,
the application must read it, we assume that mostly-write
and mixed sets can be contemplated by the same set of
applications.

To evaluate the benefits of DSM architecture in a
NoC-based MPSoC, three sets of application were devel-
oped. Each set access the memory according to a given
pattern, as described previously.

For each pattern there are 4 different implementa-
tions. Each implementation differs from the others in the
number of tasks, which can be 4, 6, 8 and 10 tasks. Each
task accesses four blocks of the L2 cache. In the mostly-
read set, each task reads 4 blocks. For each block read,
40% of it is locally used by the application before
requesting the next block. In the mostly-write set, each
task writes to 4 blocks. For each block, 40% of each
block is locally modified by the task before starting writ-
ing in the next block.

Each set of application was simulated in a 4x4
instance of the HeMPS Platform, having one task per PE
(up to 10 PEs) and three L2 cache bank configurations: 1
L2 cache bank, 2 L2 cache banks and 4 L2 cache banks.
The parameters evaluated during the simulation are pre-
sented per application: average miss latency; number of
misses; and energy consumed with communication.
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1. Mostly-read set

The results for mostly-read application set are
shown in Figure 16. According to the results, the average
cache miss latency decreases as the number of L2 cache
banks increases, due to two factors: (i) the increased
cache bandwidth; and (ii) the possibility of mapping
applications tasks to PEs located near to the cache bank
which will be mostly accessed by the task. The cache
bandwidth is increased because each bank is independent
and can handle a different cache request, which reduces
the number of packets that are queued before being han-
dled. In current manufacturing technologies, wire delay is
considered a major problem to cache designs, therefore
allocating tasks close to cache banks helps reducing the
latency that a given operation takes to be executed.

As shown in Figure 16, cache miss latency for the
configuration which uses only 1 L2 cache bank is always
higher, even when being accessed by a small number of
tasks. The two banks configuration presents an average
latency similar to the latency presented by 4 banks
(except for the 4 tasks case). Although, the worst latency
(shown as extension of the graph – thinner lines) is high
for 10 tasks, which means that some of the tasks experi-
ence high miss latency in this configuration.

C. Application benchmarks

This subsection describes the modeling and devel-
opment of two applications, which were adopted as
benchmarks to evaluate the benefits of DSM over CSM
architecture.

1. Matrix multiplication (MM)

The implementation of the matrix application fol-
lows the traditional algorithm, with two-nested loop and
no optimizations. Each task can iterate over part of the
lines of the first input matrix, while the inner loops must
be replicated in all tasks. The matrix multiplication can
be characterized as a mostly-read application due to the
fact the innermost loop has two reads, while the write
operation is only executed once per column.

In the implementation for the HeMPS Platform,
the input matrices are statically set into the L2 cache
banks at design time. The size of both matrices is 10x10.

Figure 18 presents the task graph of two MM
applications. In both cases, two tasks are used to execute
the multiplication; each task is responsible for generating
half of the resulting matrix. The difference is that in task
graph (a), both tasks access the same L2 cache bank,
while in task graph (b), each task accesses a different L2
cache bank.
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Figure 16. Cache miss average latency (AL), expressed in num-
ber of clock cycles, for a given number of L2 cache banks when
executing the mostly-read set.

2. Mostly-write set

The results for the mostly-write application set are
shown in Figure 17. The difference from the mostly-read
application set is that the 4 cache banks configuration
shows a more significant decrease in average cache miss
latency when compared to the other configurations. The
reduction in number of cycles is of up to 23% for the 8
tasks application.

It is possible to conclude that the average cache
miss latency increases fast as the number of applications
accessing that cache also increase. Therefore, the DSM
architecture can help reducing latency by distributing
cache access packets across the NoC and also, by increas-
ing access bandwidth.

Figure 17. Average write latency (AL), shown in number of clock
cycles, for a given number of L2 cache banks. Also, worst write
request latency (WL) for a given configuration of cache banks.

Figure 18. Two different implementations of a MM application
using 2 tasks.
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Table 2 shows that the average miss latency is
smaller in application B, due to the use of 2 cache banks.
The energy consumed in communication is also smaller,
because applications can be mapped to PEs closer to the
L2 bank that it is going to access mostly. This reduces the
number of hops that each message sent from a PE to the
cache must traverse. The execution time decreases when
using 2 cache banks because fewer requests are queued in
the L2 cache banks.

2. Equation Solver

The equation solver kernel solves a simple partial
differential equation on a grid, using what is referred to as
finite differencing method. The kernel sweeps over the grid,
updating each point by using the values of its neighbors. The
algorithm stops when the generated value for all points con-
verges over a pre-defined tolerance. Figure 20 shows 3 task
graphs that implement the equation solver application. In all
task graphs, the problem is divided into 4 tasks; each task is
responsible by updating 25% of the lines of the grid per
sweep. For each sweep, the Sync task is responsible for
implementing a barrier that guarantees that each task waits
for the others to finish until all the grid is updated. The dif-
ference between task graphs a, b and c is the number of L2
cache banks used.

Table 4 shows the results for the three applications.
In this case, the only gain using more cache banks is the
reduction of the average cache misses, which is of approxi-
mately 7% comparing the 4 L2 cache banks configuration
over the 1 bank configuration. There is an increase in ener-
gy consumption of communication when the number of
cache banks increases. The execution time for all applica-
tions is nearly the same, which means that the load of the
application is not problematic for the only one cache bank
scenario.
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Table 2. Results obtained from simulation of scenario 1 of matrix
multiplication. (c/c means clock cycles)

Application A Application B

Average miss latency 630 c/c 580 c/c
Hit count 13489 13082
Energy consumed
(Communication) 3.45µJ 2.28µJ
Execution time 218133.5 c/c 212093.5 c/c

Figure 19 presents two task graphs for a MM appli-
cation that uses 3 tasks. The situation is similar to the one
presented in Figure 18. The difference is that each task is
responsible for generating 1/3 of the resulting matrix.
Table 3 presents the results. Application A uses only one
cache bank, while application B uses two cache banks. As
the average miss latency is lower for application B, the
total execution time of the application decreases when
compared to application A. Compared to Scenario 1, the
execution time is significantly smaller because of the
increase in the level of parallelization. The energy spent in
communication is near the same due to the fact that the
memory accesses are the same in both cases.

Figure 19. Two different implementation of a MM application
using 3 tasks.

Table 3. Results obtained from simulation of scenario 2 of matrix
multiplication. (c/c means clock cycles)

Application A Application B

Average miss latency 625 c/c 538 c/c
Hit count 5362 5233
Energy consumed
(Communication) 1.69 µJ 1.68 µJ
Execution time 108376 c/c 102898 c/c

Figure 20. Tasks graphs for equation solver application.

Table 4. Results obtained from simulation of the equation solver
application. (c/c means clock cycles)

Application Application Application
A B C

Average miss latency 537.25 c/c 510.5 c/c 502.15 c/c
Energy consumed
(Communication) 0.17 µJ 0.29 µJ 0.29 µJ
Execution time 0.85ms 0.85ms 0.84ms

7. CONCLUSIONS AND FUTUREWORKS

State-of-the-art designs must cope with the
increasing wire delay. Distributed shared memory archi-
tectures, such as a split L2 design, help alleviating this
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problem. The current work presented a distributed shared
memory architecture with a cache coherence protocol.

The implemented cache coherence protocol
explores the benefits NoCs can bring to cache-coherence
protocols, evaluating a complete system at the RTL level
(PEs and the NoC), including the software (microkernel
and applications) running on top of it. By using the pro-
posed protocol optimizations, results show that it is pos-
sible to reduce the energy consumed by the operations up
to 86.8% (average reduction: 39%) and to achieve an
improvement of 17.53% in the execution time (clock
cycles). All optimizations, except the Transitions state,
always reported energy reduction. The Transition state
optimization is sensible to the task mapping. This fact
points to several future works, as couple the proposed
techniques to mapping heuristics that consider the mem-
ory position in the MPSoC, and data migration policies to
optimize the memory performance.

The exploration of several L2 cache banks allow
the reduction on energy consumption as the distance tra-
versed by packets can be decreased by placing applica-
tion tasks in PEs near a L2 cache bank. Latency can also
be decrease as the overall L2 cache bandwidth increases
when using a higher number of banks. Additionally, the
presence of several cache banks enables the implementa-
tion of a data migration mechanism.

Future work also includes: (i) study and evalua-
tion of data migration protocols; (ii) study and implement
a way to distribute the directory used by the cache coher-
ence protocol; (iii) evaluation and implementation of a
memory consistency model at the software level.
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