
61Journal Integrated Circuits and Systems 2012; v.7 / n.1:61-71

HdSC: A Fast and Preemptive Modeling for on Host
HdS Development

Bruno Prado1,2, Edna Barros2, Thiago Figueredo2 and André Aziz2,3

1 Departamento de Computação, Universidade Federal de Sergipe, Sergipe, Brazil
2 Centro de Informática, Universidade Federal de Pernambuco, Pernambuco, Brazil

3 Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Pernambuco, Brazil
e-mail: bruno.prado@ufs.br

1. INTRODUCTION

The increase in complexity of electronic system in
consumer electronics devices, such as smart phones or
tablets, due to new applications and human interfaces
demands more Hardware-dependent Software (HdS) to
handle these devices. This type of software corresponds
about 80% of contents and functions [2] of the system.
This challenging scenario cannot be dealt with tradition-
al development approaches, such as Instruction Set
Simulator (ISS), running at functional or cycle-accurate
levels. The very fine granularity of ISS provides a precise
execution timing report, however with the cost of a very
low simulation performance. This longer simulation time
prevents an efficient design space exploration for com-
plex systems. Actual and future designs will require even
more features integrated, leading to much more complex
systems which must handle various hardware devices as
well as multiprocessor platforms in order to explore
thread parallelism. Thus a higher level of abstraction will
be mandatory to achieve successful system designs.

In Figure 1, a modern consumer device is illus-
trated in terms of its more common interfaces. These
multiple ways of interaction include touch sensitive

screen, storage using different standards and wireless
interfaces for short (Bluetooth) and long (802.11) range.
The role of HdS in this example is to enable the system
initialization, running boot procedures and hardware con-
figuration. When the system is up, the HdS provides an
Application Programming Interface (API) for an abstract
device access and control. Also known as Hardware
Abstraction Layer (HAL), this software layer interacts
closely with the hardware, providing a generic way toac-
cess it.

ABSTRACT

In modern embedded systems, the Hardware-dependent Software (HdS) plays a critical role due to its processor and
platform dependency, such as device drivers and boot initialization. To support HdS development starting in an initial
system design phase, fast and accurate preemptive processor models should be provided for simulating the software.
These models should provide a register level interface to enable a compatible programming view on the host machine
environment. This paper presents a strategy for processor modeling that enables HdS development, using the host
machine tool chain. The proposed approach supports the specification of platform components, such as processor,
software and devices accessed through the data bus and interruption interfaces. An adaptive technique for timing esti-
mation is being proposed, which is very accurate and show a high simulation performance. Supporting the device driv-
er development and interruption service routines, these two features can be implemented and simulated at an early sys-
tem design phase and requiring no Instruction Set Simulator (ISS). This ISS model would be required only for per-
formance and accuracy comparison purposes. Experimental results show that the virtual platform specified using this
proposed approach can perform faster (up to 760x speed up) and high accurate (up to 12%) software simulation on
native host environment.

Index Terms: HdS, Modeling, Preemptive, Simulation, Instruction Set Simulator.

Figure 1. HdS example

06(50) -AF:Modelo-AF 8/21/12 7:38 PM Page 61

HdSC: A Fast and Preemptive Modeling for on Host HdS Development
Prado, Barros, Figueredo & Aziz

As shown in Figure 2, software execution environ-
ments must deal with the trade off between simulation per-
formance and accuracy. When more accurate simulation is
chosen (for example using ISS), a slower execution is
obtained, resulting in longer simulation time. The choice of
an untimed model (App Code) yields to very inaccurate
results, but delivers a faster execution. The best choice
would be to use the real hardware (Real HW) for software
development, but this option has some serious drawbacks:
software development and debugging on chip can be hard
due to lack or limitation of tools. Moreover, software devel-
opment normally is started before the hardware is available
and its specification cannot be even complete at this design
phase. To cope with this scenario, a better trade off between
performance and simulation precision can be achieved
using Transaction Level Modeling (TLM Model), a widely
accepted approach for communication abstraction. The
TLM approach increases simulation performance, keeping
accuracy due to its well-defined interfaces and timing
approximation.

The problem addressed by this work consists in
abstracting the HdS development environment, provid-
ing an estimation for application timed execution, a
mechanism for process scheduling and external com-
munication to platform components via register based
interface. This work aim is to provide a development
framework that enables an equivalent software execu-
tion in the proposed processing model and in the tradi-
tional ISS model. All software components require
minimal code ports and no extra design skills for mod-
eling.

This paper is organized as follows: in section 2,
we review the related work and provide a brief descrip-
tion and link to the proposed work. In section 3, the pro-
posed modeling approach is described in detail, including
development framework and architecture model. In sec-
tion 4, the HdSC kernel and language are described,
including the techniques adopted and a short example.
Section 5 and 6 shows the multiprocessor paradigm fea-
tures and the results obtained through validation experi-

ments performed. Finally, section 7 presents the work
conclusion with future works.

2. RELATEDWORK

To improve the related work analysis, the consid-
ered approaches are organized in three main areas: soft-
ware generation (software is generated from system mod-
els using a set of tools), hybrid model simulation (a com-
bination of native and ISS simulation) and native simula-
tion (all components execute in native environment with-
out system emulation).

A. Software Generation

Embedded software generation from a system
model [6] is an effort to reduce the costs of platform-based
hardware and software co-design. The set of tools can per-
form verification, partitioning and simulation, and code
generation from the system level specification. The sup-
port for software generation from a system model is also
provided by the proposed approach and allows abstract and
faster modeling for both hardware and software.

System Level Design Language (SLDL) for
embedded software generation [14][11][12] is an
approach to address the challenging design complexity
with system models in a higher level of abstraction. The
methods presented automatically generate software
directly from system specification written in SLDL,
allowing several refinement steps and intermediate mod-
els in development flow. This flow speeds up the devel-
opment and reduces the number of errors in system
design, since higher abstraction levels are used. The pro-
posed work aims to achieve higher abstraction models in
order to deliver a fast and robust framework. Through a
SLDL specification, the proposed approach enables soft-
ware execution in a high-level processor model.

The HdS is one of the most challenging area in
software development and the work DevC [9] proposes a
Domain Specific Language (DSL) for device driver spec-
ification. This work aims to abstract from the engineer
some device driver implementation details, defining the
structures for hardware and software views. This specifi-
cation is synthesized to a hardware controller and device
driver code that are validated in a virtual platform envi-
ronment. The main contribution of this paper to the pro-
posed work is the DSL creation to model HdS behavior,
dealing with hardware and software aspects.

B. Hybrid Model Simulation

A hybrid simulation strategy [7] is proposed in
order to speed up software simulation performance to
accomplish the task of efficiently develop complex soft-
ware. In this framework, all software code that is plat-
form-independent is executed on the host machine, while

62 Journal Integrated Circuits and Systems 2012; v.7 / n.1:61-71

Figure 2. Simulation trade-off

06(50) -AF:Modelo-AF 8/21/12 7:38 PM Page 62

HdSC: A Fast and Preemptive Modeling for on Host HdS Development
Prado, Barros, Figueredo & Aziz

platform-dependent code is executed in an ISS. This
work is quite similar to the proposed work, as can be seen
in detail in the next section, except by the fact that all
HdS code is executed, debugged and time estimated on
the host machine, instead of using an ISS for platform-
dependent code.

Software execution speed up using abstract mod-
els [8] is a strategy to reduce the amount of software that
runs on the slow ISS. This technique uses a platform-
independent portion of code, such as a RTOS kernel, and
emulates its behavior using a system model specification.
The proposed work uses the same strategy to model the
whole software as a system model component, instead of
selecting a platform-independent part of the code. This
proposed strategy keeps fast and accurate simulations,
avoiding the ISS usage.

C. Native Simulation

System TLM for HdS design [3][4] is a native
execution approach to hardware and software develop-
ment supporting hardware interface to software and inter-
ruption service routines specification. This work provides
an API to HdS access hardware resources and enables the
software preemption through an interruption handler built
in the processor model. The TLM approach and interrup-
tion handling are the major contributions to proposed
work, improving register software interface modeling
and interruption handling. These register and interruption
functions are implemented through code instrumentation,
providing register level access instead of function based
hardware access.

Software performance estimation [13] is an
important feature in embedded software development and
ISS became an essential part in this work. However, the
high increasing complexity of embedded software turns
the ISS a slow solution and time consuming approach.
This work provides a native execution strategy based on
host native code instruction annotation with cross com-
piler information, thus allowing precise estimations of
execution. The key contribution to the proposed work is
the concept of code instrumentation to retrieve detailed
execution information in host machine, while keeping the
same code that runs on target.

The cycle-counting modeling accuracy [10] pro-
vides a timing accurate approach that eliminates exces-
sive functional details, in order to achieve high simula-
tion speeds. This strategy is implemented using a cycle-
count-accurate (CCA) processor model that abstracts
internal module pipeline and cache into abstract models.
These models implement functional and timing behavior
in the processor interface perspective. This high speed
and accurate modeling demonstrate that software simula-
tion time can be improved keeping high accuracy levels
and the proposed work aims to accomplish the complex
task of HdS development abstracting excessive ISS
behavior details.

3. THE PROPOSED MODELING APPROACH

The aim of this work is to provide a high level mod-
eling approach for processor based platforms, called HdSC,
supporting embedded software development and perform-
ance assessment at an earlier design phase. The proposed
modeling mechanism provides external communication
through the specification of data bus and interruption oper-
ations using SystemC SLDL [5]. Additionally, strategies for
timing approximation and hardware/software scheduling
are proposed to achieve accurate simulation results. The
proposed modeling approach supports uniprocessor as well
as multiprocessors-based platforms.

A. Development framework

This proposed work is conceived to allow native
embedded software execution, speeding up simulation
performance and keeping high accuracy levels when
compared to ISS models. Another important supported
feature is a data bus and interruption interfaces, enabling
TLM communication and device driver development
using Interruption Service Routine (ISR). In other words,
the HdS designer can execute the software on the native
environment, improving simulation performance, keep-
ing high timing accuracy and supporting preemption for
complex HdS development.

The proposed development flow can be visualized
in Figure 3, which consists of HdSC modeling for proces-
sor (Processor Module) and software (Software Module).
These components support application requirements and
native compilation for executable platform simulation.

In the processor modeling branch, a high-level
processor model is implemented with both hardware and
software views. The hardware view generally is necessary
to accomplish data bus operations, such as external com-

63Journal Integrated Circuits and Systems 2012; v.7 / n.1:61-71

Figure 3. Development flow

06(50) -AF:Modelo-AF 8/21/12 7:38 PM Page 63

HdSC: A Fast and Preemptive Modeling for on Host HdS Development
Prado, Barros, Figueredo & Aziz

munication and interruption handling. However, the system
designer can specify any other specific processor character-
istic, such as internal registers or extra interfaces.

In the software modeling branch, a low-level soft-
ware module is implemented, enabling the application
access to the platform. This module works as a basic
layer for application storage and execution. The main
idea is to emulate a program memory storing the applica-
tion running on the target processor, in a higher abstrac-
tion level, encapsulating the application source and
enabling multiple private instances.

When all of hardware and software aspects are prop-
erly implemented, the processor and software modules are
instantiated and connected. This HdSC virtual platform
may contain whichever component is required by the appli-
cation, such as data bus, timer, serial interface or interrup-
tion controller. All of these components will be compiled by
a native C++ compiler, with HdSC and SystemC libraries,
to generate an executable specification of the platform. The
native application of the designed platform allows both
hardware and software simulation and debugging, using all
available tools in the host environment.

B. Model Architecture

This section details the processor and software
modules, explaining how their conception allows the
abstraction of the ISS and the binary memory compo-
nents, respectively. The key idea is to model each aspect
of the processor and the binary memory in native pro-
gramming elements, applying SystemC and C++ con-
structors. This strategy delivers higher level processing
models, avoiding the excessive details from ISS and
enhancing model construction.

Another key point, in the proposed work, is to
enable the same target software to be executed on the
HdSC model. In other words, the same software that can
be compiled for real hardware or ISS model can be exe-
cuted on the HdSC processor. Aside from minimal imple-
mentation changes, the source code remains compatible
with cross compilers, without affecting application
behavior or performance at binary code level. The native
execution of embedded software enables the use of a rich

set of tools (compilers, debuggers, etc) and provides
much higher execution performance due to the lack of
virtualization.

The proposed model architecture (left hand side)
is illustrated in Figure 4, side by side with the classic ISS
architecture (right hand side). These two architectures are
black box equivalent, allowing their straightforward use
in a virtual platform. In other words, the system designer
can replace the processor and software modules by the
ISS module and its software binary memory achieving
the same system behavior.

The subcomponents of the Processor Module,
responsible for software execution and interaction with
the platform, are described in more detail as follows:

• POSIX Thread: in most operating systems
(Unix, Windows, Embedded OSes, etc), the
POSIX standard is wide adopted and its thread
programming is available. The HdSC processor
implements the application main function with
its own thread, supporting all features provided,
such as synchronization and scheduling. The
POSIX thread also naturally supports the con-
current software execution, in other words,
more than one processor executing the same
software instance;

• HdSC Kernel: applying the notion of time in
native software execution, this kernel performs
timing estimation essential for accuracy and
performance evaluation. Also, this part of the
HdSC processor model schedules the software
and platform tasks, controlling how hardware
and software communication should be per-
formed. This control is critical to avoid incon-
sistencies and incorrect behavior in the com-
plete system simulation;

• SystemC Startup: this SLDL task starts the
HdSC kernel, working as a checking point.
There is a direct dependency on the SLDL sim-
ulator, thus the HdSC components are initialized
by the SystemC kernel to ensure the correct
behavior. When SystemC executes this process,
the POSIX Thread is started and manages the
HdSC kernel in order to execute the attached
software;

• SystemC Interruption: portion of the HdSC
processor responsible for receiving external
interruption requests. All external requests come
from SystemC modules, such as hardware
peripherals, thus the management of them is
also performed by a SLDL task. When an inter-
rupt is generated, the HdSC Kernel receives the
requisition to preempt the software execution
and call the assigned ISR;

• TLM: defines how the HdSC processor module
accesses external devices. In this particular
example, the TLM paradigm is employed due to

64 Journal Integrated Circuits and Systems 2012; v.7 / n.1:61-71

Figure 4. The proposed model (left hand side) and ISS model
(right hand side)

06(50) -AF:Modelo-AF 8/21/12 7:38 PM Page 64

HdSC: A Fast and Preemptive Modeling for on Host HdS Development
Prado, Barros, Figueredo & Aziz

the fact that it supports a high level communica-
tion among processes. However, the system
designer can use a more detailed approach, such
as pin accurate, because system architect freely
defines this interface.

Detailing Software Module, it is conceived to be
connected and executed by the Processor Module. As
explained earlier, this component mimics a binary mem-
ory function, behaving as an application container. The
C++ class definition ensures that each instance of same
application has its own memory space for variables,
enabling multiple and private instances in the same plat-
form. This software encapsulation is essential for system
multiprocessing, which uses multiples processors, due to
concurrency and data sharing.

4. HDSC NATIVE SIMULATION

This section provides more detailed information
about the HdSC native simulation strategy and how it
improves HdS development. A fully native execution is
naturally faster than virtualized execution in ISS, due to
reduced amount of needed computation. The simulation
performance is boosted when compared to the ISS model,
however it is necessary to keep a high accurate timing
behavior. This requirement is achieved by two essential
proposed features: code instrumentation, to enable inter-
rupt routines preemption at basic block level; and dynam-
ic timing translation, for accurate cycle estimation from
native time measurement.

A. Code Instrumentation

In HdS development, one of the most critical task is
the design of ISR to handle platform interruption requests.
It is highly desirable to avoid unexpected behavior due to
sequence invocation order or timing variation. When ISS
models are employed, the software execution preemption
occurs whenever the interrupt flag request is enabled, halt-
ing the current execution flow. After the suspension, the
execution flow is changed to the ISR and when it ends, the
previous software execution flow is resumed.

In ISS, the software is a sequence of instructions
executed step by step to implement the desired behavior.
Before or after the execution of a single instruction, the
interruption flags are checked for ISR activation. In other
words, if interruption is enabled, the processor checks for
new requests every each instruction in software execu-
tion. This fine granularity provides a precise execution
flow, supported by dedicated hardware components.

Considering a native software execution, there is no
implicit procedure to halt the current flow in order to exe-
cute another one. This behavior could be achieved by
explicit mechanisms, such as code instrumentation. Code
instrumentation automatically inserts checkpoints at basic

block level to enable interruption checking, instead of
instruction level as occurs in ISS. Once the platform gener-
ates an interruption request, before or after basic a block
execution the interruption is handled and the software flow
is halted. In other words, instead of checking interruptions
at instruction level, the HdSC approach checks for inter-
ruptions every each basic block execution.

In Figure 5, it is illustrated which control flow
statements are instrumented and how this automatic code
instrumentation is performed. The control flow directives
if, switch, while and for are automatically instrumented
by HdSC to check for pending interruption requests. The
basic block is executed atomically (atomic block) until
the next checkpoint is reached. The automatic code
instrumentation is performed by the native compiler pre-
processor which inserts HdSC’s interruption checking
function and if necessary triggers the ISR execution.

65Journal Integrated Circuits and Systems 2012; v.7 / n.1:61-71

Figure 5. Code Instrumentation

Instead of instruction by instruction emulation, the
native software execution runs a sequence of basic
blocks, providing a coarser-grained simulation when
compared to ISS. This coarser granularity speeds up exe-
cution due to the reduction of checking procedures and
their overhead. However, this flow abstraction implies a
lower interruption handling resolution due to the fact of
the execution of basic blocks as the minimal step. The
logical consequence is the loss of accuracy, but as dis-
cussed earlier, there is a trade off between performance
and accuracy. Keeping accuracy at acceptable levels is
the key to boost simulation performance.

B. Run-time Dynamic Timing Estimator

The native execution of a HdS application, with-
out any extra tool or library in the host machine, lacks
timing information, such as number of clock cycles and
executed instructions. However, the timing information is
mandatory in HdS development due to external commu-
nication and peripherals timing requirements. In other
words, the simulation time is an essential part of HdS
behavior and must be supported by the native tool chain.

06(50) -AF:Modelo-AF 8/21/12 7:38 PM Page 65

HdSC: A Fast and Preemptive Modeling for on Host HdS Development
Prado, Barros, Figueredo & Aziz

To accomplish this timing requirement, three
related work approaches were considered: software gen-
eration from high level models (see subsection 0) where
the time is a model parameter; hybrid model (see subsec-
tion 0) in which both high level model and ISS are inte-
grated; and native simulation (see subsection 0) that exe-
cutes embedded software on the host machine with tim-
ing annotation. This novel work proposes a dynamic tim-
ing translation, instead of static timing annotation
acquired from previous ISS simulations. The key concept
relies in the dynamic mapping between host machine
time and virtual platform time, providing the equivalent
of software execution delay in virtual platform approach.
The dynamic timing mapping allows the synchronization
between the native application execution and the SLDL
environment, keeping consistency and high accuracy of
HdS behavior.

In order to estimate real hardware performance,
the processor clock cycle period (CLK) and cycles per
instruction (CPI) are needed as parameters to RMA fil-
tering. The Formula 2, keeping the range 0 < CPI ≤ 1 con-
straint, defines the amount of stored samples considered
in the filtering process. This accurate average estimation
(Averaget) of each basic block is continuously updated
and the current basic block sampling (Currentt) delivering
a dimensionless value. Multiplying this obtained value
and platform’s CLK (see Formula 3), plus custom defined
model parameters, the current basic block simulation
time is estimated. In other words, the equivalent platform
time of basic block is calculated and approximated to
enable an accurate timing behavior of embedded software
in this high level model.

C. Modeling Example

This subsection will provide an example of the pro-
posed approach, comprising the hardware modeling

66 Journal Integrated Circuits and Systems 2012; v.7 / n.1:61-71

Once the application is started, each basic block
has its execution time measured, using the host’s high
precision timer. The native execution time of the virtual
platform is also measured using this same high precision
timer, as well as the simulated time. In Relation 1, the
basic block (BB) and virtual platform (VP) have their
native times measured plus the availability of the VP sim-
ulation time. With this information it is possible to esti-
mate BB equivalent simulation time in VP.

Figure 6. RMA behavior over iterations

The obtained estimation samples acquired
throughout the software iterations are noisy due to the
interference of the host unrelated application and servic-
es sharing the same resources. These estimations are
smoothed by Running Moving Average (RMA) filtering,
as can be seen in Figure 6. This filtering greatly reduces
out of context points and provides a much more reliable
basic block timing estimation.

06(50) -AF:Modelo-AF 8/21/12 7:38 PM Page 66

HdSC: A Fast and Preemptive Modeling for on Host HdS Development
Prado, Barros, Figueredo & Aziz

(processor), the software modeling (application container)
and the source code application in C. All details of the pro-
posed language will be explained from syntax through the
implementation of a hypothetical platform. This system is
composed by a peripheral with two registers for data
manipulation (DATA) and operation request (CONTROL).

In the software modeling, shown in Listing 1, the
designer must specify the platform address and data types
(line 4). These types could be defined in any desired
abstraction level, such as TLM or pin accurate level. The
chosen type must match the processor model interface,
once it is responsible for data bus operations. In the con-
structor (lines 6 to 11), all modeled registers must be
bound to its platform addresses and specific initialization
should be performed. Finally, the main loader (lines 13 to
17) and the interruption handler (lines 18 to 22) are
implemented, followed by register definitions (lines 24 to
36) and declarations (lines 37 to 42).

The processor or hardware modeling, described in
Listing 2, requires platform address and data types (line
4) for the data bus interface. This interface must be com-
patible with the software model definitions. The default
constructor (lines 6 to 12) initializes all default processor
register fields and values (line 9) and starts the SystemC
interruption thread handler (line 11). The TLM interface
(lines 14 to 16) and the processor specific variables are
declared (lines 17 to 19), including interruption handler
behavior (lines 30 to 45) and data bus access callbacks
(lines 46 to 55).

67Journal Integrated Circuits and Systems 2012; v.7 / n.1:61-71

06(50) -AF:Modelo-AF 8/21/12 7:38 PM Page 67

HdSC: A Fast and Preemptive Modeling for on Host HdS Development
Prado, Barros, Figueredo & Aziz

This source code application in C, detailed in
Listing 3, has in the first part a dual platform header defini-
tion (lines 5 to 32). This dual platform defines which model
will be used: HdSC or ISS. The main function (lines 34 to
53) iterates for 256 times writing the incremented data in
the peripheral register and reading it after this operation
(lines 38 to 49). This application was implemented just to
demonstrate HdSC modeling features, executing the same
ISS software and requiring almost no code porting.

5. SUPPORTING MULTIPROCESSOR PLATFORMS

The great majority of embedded systems are
including multiprocessing as an approach to keep system
performance growing. It is an alternative approach to sin-
gle core processing, which is limited by conceptual and
architectural bottlenecks, such as the Instruction Level
Parallelism (ILP) and power consumption limitation.
These limitations were the main causes for this new pro-
cessing paradigm that brings challenges for development
and validation of complex systems.

A. Concurrent Software Execution

To take full advantage of a multiprocessor platform,
the embedded software must be implemented to properly
handle the shared resources, avoiding the concurrency
issues. The compiled application is loaded in a memory and
executed by two or more processors. There are two main
strategies in multiprocessing: Symmetric Multiprocessor
System (SMP) where all processors share the same central-
ized memory; and Asymmetric Multiprocessing (AMP)
where the application is stored and executed in separated
memories.

Whatever strategy employed, the Figure 7 sum-
marizes the N processors to 1 software relation. It is
important to notice that the same sequential or pseudo
parallel behavior obtained in the single processor sce-
nario must be achieved in a multiprocessor platform.

The system designer can use as many processors
as possible, but the overall system performance is limited
by its sequential code. The Amdahl’s Law (defined by
Formula 4) defines this maximum theoretical speed up
that could be achieved by a multiprocessor platform.

68 Journal Integrated Circuits and Systems 2012; v.7 / n.1:61-71

Figure 7. Multiprocessor scenario

For example, if a program has 95% of parallel (P)
and 5% of sequential (1 - P) code, the maximum speed up
is limited by 20 times (see Formula 5). No matter how
many cores are used, this single task could not be
improved indefinitely. However, modern complex plat-
forms are composed by dozens of applications to deliver
the complete system features. That is why multiprocess-
ing can truly boost system performance, despite the size
of a sequential application code.

B. Supported Concurrent Programming Model

There are several parallel programming tech-
niques, but we will focus on the POSIX Thread API,
which the HdSC kernel is based on, to provide concurrent
software execution. Every processor instance, as shown
in Figure 4, is powered by its own thread running on the
local machine. All the available functions that can pro-
vide thread creation, termination, synchronization, sched-
uling and debugging are supported and are available in
most Operating Systems, including the ones for embed-
ded platforms.

06(50) -AF:Modelo-AF 8/21/12 7:38 PM Page 68

HdSC: A Fast and Preemptive Modeling for on Host HdS Development
Prado, Barros, Figueredo & Aziz

The example in Listing 4 describes a simple con-
current counter executed by multiple processors. The race
condition in the counter variable increment is properly
handled by the use of mutex (declaration in lines 21 to
22) synchronization functions to lock and unlock the crit-
ical region (lines 32 to 37) shared by all processors. This
example of concurrent synchronization avoids an incon-
sistent behavior and delivers the same behavior obtained
in a single core platform. The processor instance identifi-
cation (line 25) is also possible, for information purposes
or task scheduling, for example.

Since the target platform supports POSIX Thread,
this same source code could be directly used in HdSC mod-
els and real hardware. However, if it is not available in the
target platform, the system designer can port or emulate the
target functions in the software module. This seamless par-
allel programming approach, employing HdSC, boosts the
multiprocessor software development by native and
straightforward concurrency support. This efficient pro-
cessing approach keeps the focus on software development
and how the parallel code should be implemented.

6. EXPERIMENTAL RESULTS

To validate the proposed approach for high level
hardware and software modeling for HdS development,
some benchmarks and custom applications were execut-
ed to compare and analyze the performance and timing
accuracy of the proposed modeling approach.

For comparison purposes, a virtual platform was
specified using the SystemC SLDL and the ArchC
Architecture Description Language (ADL) [1] infrastruc-
ture, powered by a SPARC-V8 ISS.

A. Accuracy and Performance Metrics

The accuracy and performance measurements are
acquired from two metrics of simulation report: the sim-
ulation time and the execution time of simulation. The
simulation time is the total amount of clock cycles simu-
lated in virtual platform. The execution time of simula-

tion is the run-time of the platform executable application
in native host environment, in other words, it is the real
time spent in simulation.

In related work [12], these two metrics are used to
provide the number of cycles simulated in a certain time in
seconds (Cycles/s). Another metric is adopted by [13] is
MIPS, using the instruction timing information collected
from ISS to report the number of executed instructions. This
work uses the MIPS metric obtained from timing estimation
plus processor specifications, such as the CLK and the CPI.

69Journal Integrated Circuits and Systems 2012; v.7 / n.1:61-71

Instead of estimate the time of a single or few
instructions, the whole basic block time is estimated,
reducing the computational complexity of simulation.
Since the clock cycle and the CPI of processor are
known, it is possible to determine how many instructions
can be executed in certain amount of time.

In other words, if the simulation time, the proces-
sor clock cycle and the CPI are known, the number of
executed instructions can be directly calculated dividing
the simulation time by processor clock cycle times CPI
(see Formula 6).

For accuracy analysis, the ISS simulation report is
the reference solution, offering 0% accuracy error due to
its high detailed modeling. The error is calculated using
the Formula 7, which computes the modulo of difference
between ISS and HdSC timing, in order to obtain a per-
cent error from ISS reference.

To obtain the simulation speed up, the achieved
HdSC MIPS rate is calculated from estimated simulation
time, applying Formula 5. This HdSC MIPS is divided by
ISS MIPS, delivering the speed up ratio, as can be seen in
Formula 8.

It is important to notice that the proposed HdSC
modeling aims to provide the same architectural efficien-
cy from ISS strategy, delivering a behavior as close as
possible to the ISS approach. Also is desired the reduc-
tion of the computational complexity, and thus the
increasing performance by the reduction of execution
time on the host machine.

B. Uniprocessor Platform

This platform is composed by a SPARC-V8 ISS
running at 1 GHz clock frequency and performing 500
instructions per clock cycle (CPI = 1 / 500).

06(50) -AF:Modelo-AF 8/21/12 7:38 PM Page 69

HdSC: A Fast and Preemptive Modeling for on Host HdS Development
Prado, Barros, Figueredo & Aziz

executed instructions in ISS is shown and in the third col-
umn the HdSC instruction counting estimating is shown.
In the last column, the error between the precise ISS tim-
ing and the approximated HdSC timing is calculated.

Another important aspect, analyzed in application
execution, is the simulation speed up achieved by the
HdSC approach, detailed in Table 2. The performance
achieved in ISS for each application are shown in the sec-
ond column, with an average value of 0.32 MIPS. The
proposed HdSC model performance is shown in the third
column, providing an average value of 193.57 MIPS and
speed up, shown in the last column, reaches an average
improvement of 580.30 times.

70 Journal Integrated Circuits and Systems 2012; v.7 / n.1:61-71

Figure 8 shows how the processor is bound to other
devices, such as application binary memory (Memory) and
interconnection data bus (Bus). Also connected via data
bus, the peripherals configurable timer (Timer) and real-
time clock (RTC) were integrated to fulfill the benchmarks
requirements.

The experiments were performed using two well
known benchmarks (EEMBC Coremark and Dhrystone
2.1) and three custom applications for message printing
(Hello World), mathematical intensive operations (Iterator)
and multiple timer controller (Timer Control), detailed
below:

• EEMBC Coremark: developed by the Embedded
Microprocessor Benchmark Consortium, this
industry class benchmark employs real-world
algorithms to measure the embedded devices per-
formance. Its implementation is focused in
processor evaluation and it was executed using
size 1000 performance parameters;

• Dhrystone 2.1: synthetic algorithms developed
by Reinhold P. Weicker, this benchmark execute
integer only operations and it is wide used for
processor performance evaluation. The number
of iterations is set to 100,000 to enable stable
performance estimation;

• Hello World: considered as a base case study
due to its minimalism and simplicity, illustrating
that even the most basic examples can be suc-
cessfully executed in this processing model;

• Iterator: an application that performs sequential
mathematical operations, repeating for 1 billion
times, over its local variables. This computer-
intensive application is intended to match the
worst case scenario in data processing, because
all computation is dependent from previous cal-
culation, preventing parallel execution and sig-
nificant compiler optimization;

• Timer Control: this application was developed
to perform I/O operations (external communica-
tion), exploring register model capabilities and
validating HdS development behavior across
the platforms. The start up code and ISR were
implemented, enabling the control of up to 8
timers instances, showing the same behavior in
ISS and HdSC platforms.

The simulation results when executing the men-
tioned applications are organized in Table 1, providing
timing accuracy measurement. The applications are listed
in the first column, in the second column the number of

Figure 8. Reference virtual platform

Table 1. Instruction counting estimation.

Application ISS HdSC Error

Coremark 2,369,025,691 2,379,923,209 0.46%
Dhrystone 102,099,192 102,761,469 0.65%
Hello World 1,011 1,118 10.58%
Iterator 1,700,008,234 1,516,477,037 12.10%
Timer Control 95,787,868 95,659,477 0.13%

Table 2. Simulation performance speed up.

Application ISS HdSC Error

Coremark 0.36 MIPS 178.29 MIPS 495.26x
Dhrystone 0.37 MIPS 234.82 MIPS 634.65x
Hello World 0.15 MIPS 53.13 MIPS 354.20x
Iterator 0.37 MIPS 242.93 MIPS 656.57x
Timer Control 0.34 MIPS 258.68 MIPS 760.82x

Despite the simulation trade-off between perform-
ance and accuracy discussed earlier, this work demon-
strated to provide a fast and accurate hardware and soft-
ware modeling mechanism. When compared to precise
and widespread ISS approach, the HdSC model provides
up to 12% of timing error and up to 760.82 times of speed
up, enabling a fully ISS compatible development view.
Considering the related works: [12] with up to 3% of
accuracy error and 45 times of speed up in HW/SW BFM
level; [13] with up to 2% of accuracy error and 400 times
speed up in native execution; and [10] with 0% of accu-
racy error and 60 times of speed up in CCA model, this
work contributes to enhance the state of art of high level
system simulation.

C. Multiprocessor Platform

For evaluation of multiprocessing platform fea-
tures, in the previous uniprocessor platform (see Figure
8) were added more three processors. This addition is
intended to analyze the HdSC four core multiprocessing
behavior and collect data about simulation accuracy and
performance. The same applications executed on the sin-
gle core platform are executed on this multiprocessor
environment in order to compare results.

The timing estimations shown in Table 3 demon-
strate the amount of processing performed by each core.
The accuracy achieved has a lower error rate (up to
10.58%) due to less operation performed in processors.

06(50) -AF:Modelo-AF 8/21/12 7:38 PM Page 70

HdSC: A Fast and Preemptive Modeling for on Host HdS Development
Prado, Barros, Figueredo & Aziz

The Hello Word application could not be partitioned due
to its small size, being replicated in processors and per-
forming the same operations. The results obtained are the
same due to low overhead of this application.

In Table 4, the ISS simulator has it performance
decreased due to their multiples instances sharing the
same simulator. The HdSC kernel runs also in lower
speeds because of necessary synchronization to avoid
race conditions. This overhead implies in lower speed up
levels than expected (up to 735.76x).

The current development efforts are in synchro-
nization mechanisms to reduce simulation overhead and
boost overall performance.

71Journal Integrated Circuits and Systems 2012; v.7 / n.1:61-71

ACKNOWLEDGEMENTS

We would like to acknowledge the Ministry of
Science, Technology and Innovation (MCTI) for the
financial support provided by the funding agencies CNPq
and CAPES.

REFERENCES

[1] Azevedo, R., Rigo, S., Bartholomeu, M., Araujo, G., Araujo, C., and Barros, E.,
“The ArchC Architecture Description Language and Tools”. Int. J. Parallel
Program. 33 (October 2005), 453-484.

[2] Dömer, R., Gerstlauer, A., and Müller, W., “Introduction to Hardware-dependent
Software Design for Multi- and Many-core Embedded Systems”. In Proceedings
of the 2009 Asia and South Pacific Design Automation Conference (Piscataway,
NJ, USA, 2009), ASP-DAC ‘09, IEEE Press, pp. 290-292.

[3] Ecker, W., Esen, V., Schwencker, R., Steininger, T., and Velten, M., “TLM+
Modeling of Embedded HW/SW Systems”. In Proceedings of the Conference
on Design, Automation and Test in Europe (3001 Leuven, Belgium, Belgium,
2010), DATE ‘10, European Design and Automation Association, pp. 75-80.

[4] Ecker, W., Heinen, S., and Velten, M., “Using a Dataflow Abstracted Virtual
Prototype for HdS-design”. In Proceedings of the 2009 Asia and South Pacific
Design Automation Conference (Piscataway, NJ, USA, 2009), ASP-DAC ‘09,
IEEE Press, pp. 293-300.

[5] Grotker, T., System Design with SystemC. Kluwer Academic Publishers,
Norwell, MA, USA, 2002.

[6] Herrera, F., Posadas, H., Sanchez, P., and Villar, E., “Systemic Embedded
Software Generation from SystemC”. In Proceedings of the conference on
Design, Automation and Test in Europe - Volume 1 (Washington, DC, USA,
2003), DATE ‘03, IEEE Computer Society, pp. 10142-.

[7] Kraemer, S., Gao, L., Weinstock, J., Leupers, R., Ascheid, G., and Meyr, H.,
“Hysim: A Fast Simulation Framework for Embedded Software Development”.
In Proceedings of the 5th IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis (New York, NY, USA,
2007), CODES+ISSS ‘07, ACM, pp. 75-80.

[8] Krause, M., Englert, D., Bringmann, O., and Rosenstiel, W., “Combination of
Instruction Set Simulation and Abstract RTOS Model Execution for Fast and
Accurate Target Software Evaluation”. In Proceedings of the 6th IEEE/ACM/IFIP
international conference on Hardware/Software codesign and system synthesis
(New York, NY, USA, 2008), CODES+ISSS ‘08, ACM, pp. 143-148.

[9] Lisboa, E., Silva, L., Chaves, I., Lima, T., and Barros, E., “A Design Flow based
on a Domain Specific Language to Concurrent Development of Device Drivers
and Device Controller Simulation Models”. In Proceedings of th 12th
International Workshop on Software and Compilers for Embedded Systems
(New York, NY, USA, 2009), SCOPES ‘09, ACM, pp. 53-60.

[10] Lo, C.-K., Chen, L.-C., Wu, M.-H., and Tsay, R.-S., “Cycle-Count-Accurate
Processor Modeling for Fast and Accurate System-level Simulation”. In
Proceedings of the Conference on Design, Automation and Test in Europe
(2011), DATE ‘11.

[11] Schirner, G., Gerstlauer, A., and Dömer, R., “Automatic Generation of
Hardware dependent Software for MPSoCs from Abstract System
Specifications”. In Proceedings of the 2008 Asia and South Pacific Design
Automation Conference (Los Alamitos, CA, USA, 2008), ASP-DAC ‘08, IEEE
Computer Society Press, pp. 271-276.

[12] Schirner, G., Gerstlauer, A., and Dömer, R., “Fast and Accurate Processor
Models for Eficient MPSoC Design”. ACM Trans. Des. Autom. Electron. Syst.
15 (March 2010), 10:1-10:26.

[13] Wang, Z., and Herkersdorf, A., “Software Performance Simulation Strategies for
High-level Embedded SystemDesign”. Perform. Eval. 67 (August 2010), 717-739.

[14] Yu, H., Dömer, R., and Gajski, D., “Embedded Software Generation from
System Level Design Languages”. In Proceedings of the 2004 Asia and South
Pacific Design Automation Conference (Piscataway, NJ, USA, 2004), ASP-
DAC ‘04, IEEE Press, pp. 463-468.

Table 3. Instruction estimation per processor.

Application ISS HdSC Error

Coremark 592,382,221 594,810,988 0.41%
Dhrystone 31,196,108 31,364,567 0.54%
Hello World 1,011 1,118 10.58%
Iterator 361,251,750 377,652,579 4.54%
Timer Control 20,558,102 20,327,639 1.13%

Table 4. Simulation performance speed up per processor.

Application ISS HdSC Error

Coremark 0.09 MIPS 49.29 MIPS 547.61x
Dhrystone 0.10 MIPS 67.31 MIPS 673.14x
Hello World 0.15 MIPS 53.13 MIPS 354.20x
Iterator 0.09 MIPS 61.05 MIPS 678.33x
Timer Control 0.10 MIPS 73.57 MIPS 735.76x

7. CONCLUSIONS

In this paper, the HdSC approach was presented,
aiming to improve HdS development flow. Adopting the
host native execution strategy, a higher-level processor
and software modeling allow a more efficient system exe-
cution in a virtual platform environment. The require-
ment of executing the same software source code as a
native application, instead of using SLDL models, creates
an innovative abstraction model. The key concepts and
the modeling examples showed how this approach could
truly enable a more efficient HdS development. This effi-
ciency comes from native execution that boosts simula-
tion performance (up to 760.86 times), preemption sup-
port for ISR design and accurate timing estimations (up
to 12% error) mechanisms.

Next steps consist of applying the proposed
approach to a broader variety of industrial benchmarks
and design more complex platforms and applications.
Additionally, ongoing research aims to improve HdSC
algorithms and techniques, in order to reduce the tim-
ing estimation error and enhance simulation perform-
ance. The goal is to offer a solid alternative to tradi-
tional ISS approach, keeping its high accuracy and
HdS support. Hence this work reduces some critical
bottlenecks in complex HdS system design, the contri-
bution of this proposed work is relevant to considered
state of art.

06(50) -AF:Modelo-AF 8/21/12 7:38 PM Page 71

	Sumario e Rostos-2
	01(55)
	02(54)
	03(56)
	04(52)
	05(58)
	06(50)
	07(53)

