
60 Journal of Integrated Circuits and Systems 2014; v.9 / n.1:60-69

A Domain-Transformation Approach to
Synthesize Read-Polarity-Once Boolean Functions

Vinicius Callegaro1, Mayler G. A. Martins2, Renato P. Ribas1,2 and André I. Reis1,2

1PPGC, Institute of Informatics, UFRGS
2PGMICRO, Institute of Informatics, UFRGS

Porto Alegre, RS, Brazil
e-mail: vcallegaro@inf.ufrgs.br

ABSTRACT

 Efficient exact factoring algorithms are limited to read-once (RO) functions, where each variable appears exactly
once at the final Boolean expression. However, these algorithms present two important constraints: (1) they do
not consider incompletely specified Boolean functions (ISFs), and (2) they are not suitable for binate functions. To
overcome the first drawback, an algorithm that finds RO expressions for ISF, whenever possible, is proposed. In
respect to the second limitation, we propose a domain transformation that splits existing binate variables into two
independent unate variables. Such a domain transformation leads to ISFs, which can be efficiently factored by ap-
plying the proposed algorithm. The combination of both contributions gives optimal results for a recently proposed
broader class of Boolean functions called read-polarity-once (RPO) functions, where each polarity (positive and
negative) of a variable appears at most once in the factored form. Experimental results carried out over ISCAS’85
benchmark circuits have shown that RPO functions are significantly more frequent than RO functions.

Index Terms: Boolean functions, factoring, logic synthesis, read-once, read-polarity-once, digital circuits.

I. INTRODUCTION

Factoring Boolean functions is a fundamen-
tal operation in algorithmic logic synthesis [1][2].
Factoring is the process of deriving a parenthesized
algebraic expression, or factored form, representing a
given logic function, usually provided initially in sum-
of-products (SOP) or product-of-sums (POS) forms.
For instance, f=a∙b+a∙c∙d+a∙c∙e can be factored into
the logically equivalent equation f=a∙(b+c∙(d+e)).

The task of factoring Boolean functions into
shorter, more compact, logically equivalent formulae is
one of the basic operations in the early stages of algo-
rithmic logic synthesis [2]. In most design styles, like
conventional CMOS gates, the electrical implementa-
tion of a Boolean function corresponds almost directly
to its factored expression in terms of literals and device
count. Generating an optimum factored form, i.e. the
shortest length expression, is an NP-hard problem [3].
Hence, heuristic algorithms have been developed in or-
der to obtain good factored solutions [1]-[5]. Among
well-known heuristic algorithms is X-Factor [3][4],
which provides good results but does not guarantee
minimal expressions. In [6], Lawler claims to provide
the exact factoring. However, Lawler’s method is not
scalable and becomes impractical even for functions
with 4 variables. Recently, new approaches have im-

proved the factoring process for exact solutions, but
the scalability and runtime still remain the main bot-
tlenecks [7-9]. Efficient and exact algorithms exist for
a sub-class of functions known as read-once functions
[10]-[12]. A Boolean function is considered read-once
(RO) whether it can be represented in a factored form
where each variable appears only once [10]. Reviewing
the example above, the function f=a∙(b+c∙(d+e)) is
RO. This class of functions is of special interest in logic
synthesis since they are quite frequent in circuit design
[17].

Exact algorithms for RO functions present two
important limitations: (1) they do not factorize incom-
pletely specified Boolean functions (ISF), and (2) they
are not suitable for functions with binate variables.
In order to overcome the first constraint, we propose
an algorithm to find RO expressions for ISF, when-
ever possible. With respect to the second limitation,
we propose a domain transformation, named here as
unatization process, that splits existing binate variables
into two independent unate variables. Such a domain
transformation leads to ISF, which can be efficiently
factored by the proposed algorithm.

The combination of both contributions gives
exact factoring results for a recently proposed and
broader class of functions called read-polarity-once
(RPO) functions [13], where each polarity (positive

A Domain-Transformation Approach to Synthesize Read-Polarity-Once Boolean Functions
Callegaro, Martins, Ribas & Reis

61Journal of Integrated Circuits and Systems 2014; v.9 / n.1:60-69

and negative) of a variable appears at most once in
the factored expression. For instance, RO algorithms
fail when factoring the expression f=!a∙b∙d+b∙c+a∙c,
since the variable ‘a’ is binate. The proposed RPO
algorithm can factorize such a function into an exact
expression f=(!a∙d+c)∙(a+b), which presents only
5 literals. Moreover, we have investigated the occur-
rence of RPO functions in circuit designs taking into
account the ISCAS’85 benchmark circuits [14]. The
results have shown that RPO functions are significant-
ly more frequent than RO functions. The entire flow
comprising the unatization of RPO functions and the
factoring of ISF in RO expressions has been validated.
Our implementation was able to find optimal solutions
of functions with up to 16 literals.

This paper is organized as follows. Section II
presents the basic concepts and a brief overview of
the current state-of-the-art algorithms for factoring
RO functions. In Section III, we propose an algo-
rithm for factoring ISF in RO expressions. Section IV
presents the proposed domain transformation, i.e. the
unatization process, as well as the complete algorithm
to perform the factoring of ISF in RPO expressions.
Experimental results are shown in Section V, whereas
the conclusions are outlined in Section VI.

II. PRELIMINARIES

A. Boolean functions

Let B = {0,1} and Y = {0,1}, a completely speci-
fied Boolean function (CSF) f in n-input variables, x1,…
,xn, is a function:

f : Bn → Y (1)

where x = [x1,…,xn] ∈ Bn is the input of f.
An incompletely specified Boolean functions (ISF)

differs from completely specified functions in the fact
that the former may also assume don’t-care (X) val-
ues, in addition to the binary values 0 and 1, i.e. Y =
{0,1,X} [15].

An element m ∈ Bn is called term. The number
of terms in Bn is 2n. The on-set f ON is defined as the
set of terms m ∈ Bn such that f(m) = 1, the off-set f OFF
such that f(m) = 0 and the don’t-care set f DC such that
f(m) = X.

Two ISF f and g are said equal when f ≡ g, mean-
ing that (f ON = gON), (f OFF = gOFF) and (f DC = gDC).
However, when in an ISF domain, it is often needed
to verify if an ISF f is equivalent to another ISF g. Two
ISF f and g are equivalent f ≈ g iff f ON ∩ gOFF = ∅ and
f OFF ∩ gON = ∅.

Hereafter, function and Boolean function will
have the same meaning in this paper.

B. Cofactor and unateness

In order to identify the unateness behavior of a
variable, let us define the cofactor operation as follows.
Given an n-input function f(x1,x2,…,xn), the cofactor
of f with respect to xi is denoted as f(x1,…,xi=c,…,xn),
and it represents the sub-function where variable xi is
assigned to a Boolean constant c ∈ {0, 1} [12]. For
presentation sake, let f(x1,…,xi=c,…,xn) be represented
by f(xi=c). In this sense, the unateness behavior of a
variable xi can be obtained according to the following
relationships:

α = f(xi=1) (2)

β = f(xi=0) (3)

γ = α + β (4)

positive unate: (α ≡ γ) ∧ (α ≠ β) (5)

negative unate: (β ≡ γ) ∧ (α ≠ β) (6)

don’t care: α ≡ β (7)

binate: α ≠ β ≠ γ ≠ α (8)

We say that a Boolean function is unate if all its vari-
ables are either positive or negative unate. When all
variables are positive (negative) unate, we say that the
function f is positive (negative) unate. In the case when
at least one variable is binate, the function is consid-
ered binate.

C. Read-once Boolean functions

Read-once (RO) Boolean functions are well-
known for a long time [16], and their special prop-
erties still play important role in modern VLSI circuit
synthesis flow [4][11]. In [17], an extensive investiga-
tion was performed in order to evaluate the occurrence
of RO functions in circuit design.

A RO form is a factored form where each vari-
able appears exactly once. A Boolean function is RO if
it can be represented by an RO form. For example, the
Boolean function represented by:

f = x1∙x2+x1∙x3∙x4+x1∙x3∙x5 (9)

is a RO function since it can be factored into:

f = x1∙(x2+x3∙(x4+x5)) (10)

If a given function f can be factored into a RO form,
then all variables of f are either positive or negative un-
ate [10]. This is a necessary but not sufficient condi-
tion, since there are functions composed by only unate
variables that cannot be factored into a RO form. For
example, the unate function f= x1∙x2+ x1∙x3+ x2∙x3 has
f= x1∙(x2+x3)+x2∙x3 as the minimal solution, in which
variables x2 and x3 appear more than once. If a function
has at least one binate variable, this variable will appear

A Domain-Transformation Approach to Synthesize Read-Polarity-Once Boolean Functions
Callegaro, Martins, Ribas & Reis

62 Journal of Integrated Circuits and Systems 2014; v.9 / n.1:60-69

with two polarities in the factored form, contradicting
the definition of RO function, where each variable ap-
pears at most once.

D. Read-once factoring algorithms

The class of RO functions was firstly intro-
duced by Hayes [16] and was called fanout-free func-
tions. Besides the class proposal, Hayes also presented
a factoring algorithm to identify and synthesize RO
factored forms. His method suffers of high complexity
since the algorithm makes intensive calls to a procedure
to perform equivalence checking of cofactors.

Peer and Pinter in [17], have also proposed an
algorithm to synthesize non-repeating literal trees, an-
other name given to RO functions. The main draw-
back of their method is that it cannot run in polyno-
mial time. This is due to the fact that their method
requires several procedure calls for converting SOP
forms into POS forms (and vice-versa). Such a routine
requires a non-polynomial time to be executed, making
the method very expensive in terms of runtime.

Golumbic, in [10], was the first to propose a
polynomial time factoring algorithm for RO functions,
called IROF. His method is based on the Gurvich’s
work [18]. The IROF algorithm receives as input an
irredundant sum-of-products (ISOP) expression and
performs graph operations to achieve an RO form. The
time complexity of the IROF algorithm is O(n | f |),
where | f | denotes the length of the ISOP equation of
a function f, and n is the number of variables of f [11].

In [12], Lee and Wang proposed a new ap-
proach, referred herein as JPHI, to overcome the lim-
itations presented in [16]. Without loss of generality,
let us consider all variables of f as positive unate. Being
f(x1,x2,…,xn) a Boolean function with n-input variables,
two variables xi and xj can be compressed whether their
cofactors are equals, i.e., f(xi=c) ≡ f(xj=c). Such com-
pression process is carried out through AND or OR
operators if the value of the constant c is equal to 0 or 1,
respectively. The compression of two variables results in
a new variable which is reinserted into f, leading to an-
other (n-1)-input function j. The algorithm then looks
for compression groups in j until reaching (if it is pos-
sible) an RO form. The time complexity of the JPHI
algorithm is O(n2K), where K denotes the number of
products in the ISOP of a Boolean function f.

Both IROF and JPHI methods factorize RO
functions in polynomial time. However, if the entire
function is not RO, the IROF method is not able to
recognize sub-functions that are RO. The JPHI meth-
od, in turn, is able to find RO sub-functions, even if
the input function is not completely RO. Furthermore,
it is possible to modify the JPHI method to accept in-
completely specified Boolean functions as input. Table
I summarizes the comparison between IROF and
JPHI algorithms.

III. FACTORING INCOMPLETELY SPECIFIED
BOOLEAN FUNCTIONS INTO READ-ONCE

EXPRESSIONS

Several methods for factoring ISF have been
proposed in the literature [6][8][9], but only the Exact
Factor approach guarantees exactness in the solutions
[8]. However, such method can take more than 10
minutes to synthesize an expression with 12 literals,
even for RO functions. This way, an efficient method
for factoring ISF is still a challenge.

A. Proposed algorithm to factorize ISF into RO
forms (ISF2RO)

This section presents the proposed algorithm to
factorize ISF into RO forms, whenever it is possible.
Our algorithm is based on the same principle discussed
in [12] and in [16] that compare cofactors in order to
group variables targeting an RO form. Despite of the
efficiency of the IROF algorithm, it cannot be modi-
fied in order to deal with ISF, since it depends on an
ISOP form as input. That is the main reason of our
choice in modifying and extending the JPHI approach
[12].

Observation 1: Let f be an ISF. Consider that
there is a RO factored form that represents f. Then,
there is at least one proper assignment of the don’t-
care terms of f that transforms f into a CSF g which is
trivially synthesized through algorithms designed for
RO functions.

For instance, consider the ISF presented in Fig.
1. Since f contains two don’t care (X) terms, it is possi-
ble to assign them into four different ways, as seen in
Table II.

All don’t care assignments presented in Table II

Table I. Comparison between IROF and JPHI algorithms.

Time complexity Fail fast Partial RO Works with ISF

IROF O(n| f |) Yes No No

JPHI O(n2K) No Yes Yes*

n: number of variables in the SOP equation.
| f |: number of literals in the SOP equation.
K: number of products in the SOP equation.
*: with modifications.

Table II. Possible don’t care assignments of Fig. 1 and solutions.

Assignment ISOP RO form

00 x1∙x4+x2∙x3 x1∙x4+x2∙x3

01 x1∙x4+x2∙x3+x2∙x4 Non-RO

10 x1∙x4+x1∙x3+x2∙x3 Non-RO

11 x1∙x4+x1∙x3+x2∙x3+x2∙x4 (x1 + x2) ∙ (x3 + x4)

A Domain-Transformation Approach to Synthesize Read-Polarity-Once Boolean Functions
Callegaro, Martins, Ribas & Reis

63Journal of Integrated Circuits and Systems 2014; v.9 / n.1:60-69

lead to unate functions, but only two of them result in
RO forms. Unfortunately, identifying such an ISOP is
not a straightforward task. An ISF can present a huge
number of ISOP forms, and only the ISOPs that lead
to unate functions are of interest. Notice that such con-
dition is necessary but not sufficient, since there are
unate functions that do not lead to RO forms.

In this sense, instead of running an exhaustive
search for finding the correct ISOP, we have created
a method that assigns the don’t care terms using a RO
driven approach. Therefore, let us define some basic
data structures used in our method.

Definition 1: An assignment is a data structure
to represent the state when a variable xi was assigned
to a Boolean constant c. An assignment is represented
by a tuple <xi,c>.

Definition 2: A logic arrangement is a data
structure used to store the grouping states. This data
structure is illustrated in Fig. 2.

Our algorithm, called ISF2RO, receives an ISF
f as input. Without loss of generality, we consider that
all variables in f are positive unate. The method starts
by inserting the input variables into a main list of logic
arrangements. Let xi be a variable in f. The logic ar-
rangement lai of xi is defined as follows:

lai.expression = “xi” (11)

lai.on_spec = { (xi = 1) } (12)

lai.off_spec = { (xi = 0) } (13)

lai.pos_cube_cof = f(lai.on_spec) (14)

lai.neg_cube_cof = f(lai.off_spec) (15)

The proposed pseudo-algorithm is shown in
Fig. 3. The method starts by filling the main list with
logic arrangements representing the input variables of
f. The initial values for each logic arrangement can be
obtained as shown in Equations (11-15). These logic
arrangements are cofactored (accordingly to the assign-
ment definition) and compared to each other. The next
step consists in finding two logic arrangements that
have the same cube cofactor function.

In order to illustrate the idea of the proposed
method, let the input ISF be f=11101X1011X00000.
After filling the main list with the input variables, the
expected list is shown in Table III.

In Table III, it is possible to see that la1 and la2
has equivalent positive cofactors. Similar situation oc-
curs between la3 and la4. Hence, according to the lines
(8-10) and (17-19) in Fig. 3, these logic arrangements
could be grouped through an OR operator. There are
also logic arrangements with equivalent negative cofac-
tors: la1 and la4; la2 and la3. Such logic arrangements
are grouped by an AND operator in accordance to the
lines (12-14) and (17-19) in Fig. 3. In Table IV, it is

x1 x2 x3 x4 f
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 X
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 X
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Figure 1. A truth table representing the ISF f = 1110 1X10 11X0
0000.

LogicArrangement

String expression
Set<Assignment> on_spec
Set<Assignment> off_spec
ISF pos_cube_cof
ISF neg_cube_cof

Figure 2. LogicArrangement data structure.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

list = create_logic_arrang_from_input_variables(f);
while (TRUE) {
 for (i=0; i < |list|-1; i++) {
 f1 = list[i];
 for (j=i+1; j < |list|; j++) {
 f2 = list[j];
 if (f1.pos_cube_cof ≈ f2.pos_cube_cof) {
 f3.exp = f1.exp + f2.exp;
 f3.on_spec=min(f1.on_spec,f2.on_spec);
 f3.off_spec = f1.off_spec ⋃ f2.off_spec;
 } elsif (f1.neg_cube_cof ≈ f2.neg_cube_cof) {
 f3.exp = f1.exp ∙ f2.exp;
 f3.on_spec = f1.on_spec ⋃ f2.on_spec;
 f3.off_spec = min(f1.off_spec, f2.off_spec);
 }
 if (f3 != null) {
 f3.pos_cube_cof = cubeCof (f, f3.on_spec);
 f3.neg_cube_cof = cubeCof (f, f3.off_spec);
 temp_list.add(f3);
 }
 }
 }
 if (|temp_list| == 0)
 return FAILURE;
 ro_instances = find_ro_expressions(temp_list);
 if (|ro_instances| != 0)
 return ro_instances;
 list = list ⋃ temp_list;
 clear(temp_list);
}

Figure 3. ISF2RO pseudo-algorithm.

A Domain-Transformation Approach to Synthesize Read-Polarity-Once Boolean Functions
Callegaro, Martins, Ribas & Reis

64 Journal of Integrated Circuits and Systems 2014; v.9 / n.1:60-69

possible to see the results of first iteration of the pro-
posed algorithm.

The algorithm continues grouping logic ar-
rangements whenever it is possible. After the second
iteration, two new logic arrangements can be found
with the following expressions:

(x1 ∙ x4) + (x2 ∙ x3) (16)

(x1 + x2) ∙ (x3 + x4) (17)

Since both (16) and (17) are RO functions, the test in
the line (26) in Fig. 3 finds and returns both solutions.

B. ISF2RO empirical analysis

The worst case time complexity of ISF2RO al-
gorithm is O(22n), where n is the number of variables
in f. However, our empirical results are encouraging.
The worst runtime observed in the experiments with
16-inputs functions was 500 seconds. The runtime
is still lower than Exact Factor [8], even being able to
deal with higher number of input variables. The Exact
Factor algorithm takes 600 seconds to factorize an
equation with 12 literals, while our ISF2RO algorithm
finds minimal equations for functions with 16 literals
in less than 500 seconds.

In order to show the time complexity of the pro-
posed algorithm, ISCAS’85 benchmark circuits were
synthesized. The functions obtained from the bench-
mark (72,423 in total) were grouped regarding input
count, from 3 up to 16 input variables. The worst case
runtime for each group is depicted in Fig. 4. The ver-
tical axis is presented in logarithm scale. This way, it
is easy to observe that the algorithm has an exponen-
tial time complexity. However, for this benchmark of
functions, the worst case runtime was 20 seconds to
synthesize a function with 16 inputs. The experiment
demonstrates the efficiency of the proposed method.

IV. FACTORING INCOMPLETELY SPECIFIED
BOOLEAN FUNCTIONS INTO

READ-POLARITY-ONCE EXPRESSIONS

Efficient algorithms exist to perform factoring
of RO formulas. Most of them readily discard func-
tions containing binate variables, since the RO func-
tions are always unate. This way, it becomes interesting
to obtain a class of functions that comprises both unate
and binate functions, as well as to obtain an efficient
method to synthesize this class into minimal factored
forms. Such class is defined as follows.

A. Read-polarity-once definition

Definition 3: A Boolean function is called
read-polarity-once (RPO) if each polarity (positive and
negative) of a variable appears at maximum once in the
minimum factored form [13].

Lemma 1: a positive (negative) unate variable
contributes with at least one positive (negative) literal
in a factored form.

Lemma 2: a binate variable contributes with at
least two literals (one positive and one negative) in a
factored form.

Theorem 1: an RPO function represented by
an expression is in minimum form, if each unate vari-
able contributes with exactly one literal and each binate
variable contributes with exactly two literals (one pos-
itive and one negative).

Proof: straightforward by lemmas 1 and 2, as
the RPO factored form contains at most one literal per
unate variable and at most two literals (one positive
and one negative) per binate variables.

Observation 2: Notice that the RPO class
is a superset of the RO class. Every RO function is
also an RPO function, while an RPO function is not
necessarily an RO function. For instance, the func-
tion f=a∙(b+c∙(d+e)) is both RO and RPO, while
f=(a+b)∙(!a+!b) is RPO but it is not RO. The RPO
class contains binate functions as elements of the class,
while the RO class contains only unate functions. This
relationship is presented in Fig. 5.

Table III. Expected initial main list for the input function
f = 11101X1011X00000.

LA exp On Off pos_cube_cof neg_cube_cof

la1 x1 x1 !x1 11101X1011101X10 11X0000011X00000

la2 x2 x2 !x2 1110111011X011X0 1X101X1000000000

la3 x3 x3 !x3 11111X1X11110000 10101010X0X00000

la4 x4 x4 !x4 1111111111XX0000 1100XX0011000000

Table IV. Grouped logic arrangements after first iteration.

LA exp. On Off pos_cube_cof neg_cube_cof

la5 x1+x2 x1 !x1 !x2 11101X1011101X10 0000000000000000

la6 x3+x4 x3 !x3 !x4 1111111111XX0000 0000000000000000

la7 x1∙x4 x1x4 !x1 1111111111111111 1100XX0011000000

la8 x2∙x3 x2x3 !x2 1111111111111111 10101010X0X00000

Figure 4. The worst case runtime (in ms) to synthesize functions
from ISCAS’85 benchmark circuits grouped by input count.

A Domain-Transformation Approach to Synthesize Read-Polarity-Once Boolean Functions
Callegaro, Martins, Ribas & Reis

65Journal of Integrated Circuits and Systems 2014; v.9 / n.1:60-69

in all of its variables, a new function is obtained. The
computation of the cofactors and the new function
obtained is presented in Fig. 7. Notice that out of 12
original don’t care values (shown in Fig. 6), two of
them remain unspecified after this process. This means
that every possible assignment of the don’t care (X) val-
ues will lead safely to unate functions. This property
is further exploited by the ISF2RO algorithm, which
returns more than one solution if it is possible.

The pseudo-algorithm for the unatization pro-
cess is shown in Fig. 8. The basic idea is to split the
binate variables into independent unate variables. Let
xi be a binate variable of f. In order to unatizate xi, a
variable not_xi is inserted into f, as shown in the line 4
in Fig. 8. It is important to notice that both variables
xi and not_xi cannot have the same value at the same
time. When a Boolean constant c is assigned to input
xi, the complemented value has to be assigned to input
not_xi. In this sense, the lines where both variables are
assigned to the same constant are set to don´t care (see

B. Unatization process

According to Definition 3, if a function can be
factored into an RPO expression, each polarity (pos-
itive or negative) of a variable appears at maximum
once in the factored expression. Hence, an interesting
point of investigation is if it is possible to separate the
positive and negative literals, and transform the func-
tion into an unate function. Another point, equally in-
teresting, is if that resulting transformation could be
treated successfully by RO factoring algorithms.

In this sense, we propose a domain transforma-
tion (referred as unatization) that splits existing binate
variables into two independent unate variables. This
domain transformation leads to ISF, which can be fac-
tored efficiently by the algorithm proposed in Section
III. The combination of both contributions provides
exact results for the recently proposed class of RPO
functions [13].

Example 1: The unatization method receives
as input an ISF and split all binate variables into two
independent unate variables. Let a and b be binate vari-
ables from f=(a+b)∙(!a+!b). In order to unatizate f,
we introduce independent variables to represent the
negative unate literals. Hence, by introducing variables
na and nb, a domain transformation is performed and
the function becomes a 4-input function, with most
of the terms appearing as don’t cares, as seen in Fig. 6.

The function represented by the truth table
shown in Fig. 6 is not positive unate. By computing
the cofactors of the function and setting the don’t care
values to force the function to become positive unate

Figure 5. Comparison between read-once and read-polarity-once
functions.

011

101

110

000

!a*b+a*!bba

011

101

110

000

!a*b+a*!bba

X1111

X0111

X1011

X0011

X1101

00101

11001

X0001

X1110

10110

01010

X0010

X1100

X0100

X1000

X0000

!a*b+a*!bnbbnaa

X1111

X0111

X1011

X0011

X1101

00101

11001

X0001

X1110

10110

01010

X0010

X1100

X0100

X1000

X0000

!a*b+a*!bnbbnaa

Figure 6. Expanding 2-input exclusive-OR to 4 variables.

X=1

X=1

X=1

X

X=1

0

1

X=0

X=1

1

0

X=0

X

X=0

X=0

X=0

!a*b+a*!b

X

X

X

X

X

0

1

X

X

X

X

X

X

0

1

X

f(a=1)

X

1

0

X

X

X

X

X

X

1

0

X

X

X

X

X

f(a=0)

x

1

x

x

x

1

x

x

x

1

0

x

x

1

0

x

f(na=1)

x

0

1

x

x

0

1

x

x

0

x

x

x

0

x

x

f(na=0)

x

1

x

1

x

0

x

0

x

1

x

1

x

0

x

0

f(b=1)

1

x

1

x

1

x

1

x

0

x

0

x

0

x

0

x

f(b=0)

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

nb

1

1

1

1

1

1

1

1

x

x

0

0

x

x

0

0

f(nb=1)

1111

1111

x011

x011

0101

0101

0001

0001

1110

1110

x010

x010

0100

0100

0000

0000

f(nb=0)bnaa

X=1

X=1

X=1

X

X=1

0

1

X=0

X=1

1

0

X=0

X

X=0

X=0

X=0

!a*b+a*!b

X

X

X

X

X

0

1

X

X

X

X

X

X

0

1

X

f(a=1)

X

1

0

X

X

X

X

X

X

1

0

X

X

X

X

X

f(a=0)

x

1

x

x

x

1

x

x

x

1

0

x

x

1

0

x

f(na=1)

x

0

1

x

x

0

1

x

x

0

x

x

x

0

x

x

f(na=0)

x

1

x

1

x

0

x

0

x

1

x

1

x

0

x

0

f(b=1)

1

x

1

x

1

x

1

x

0

x

0

x

0

x

0

x

f(b=0)

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

nb

1

1

1

1

1

1

1

1

x

x

0

0

x

x

0

0

f(nb=1)

1111

1111

x011

x011

0101

0101

0001

0001

1110

1110

x010

x010

0100

0100

0000

0000

f(nb=0)bnaa

Figure 7. Don’t care terms are set to force the function to become
positive unate.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

unatization(f ON, f DC) {
 for (int i = 0; i < n; i++)
 if (is_binate(xi)){
 createVariable(not_xi);
 XNOR = !(xi ⊕ not_xi);
 f DC = f DC + XNOR;
 fix_positive_unate(f ON, f DC, xi);
 fix_positive_unate(f ON, f DC, not_xi);
 }
 }
}

fix_positive_unate(f ON, f DC
, xi) {

 PD = positive_cofactor(f DC
, xi);

 ND = negative_cofactor(f DC
, xi);

 PC = positive_cofactor(f ON
, xi);

 NC = negative_cofactor(f ON
, xi);

 state_0x = !PD ∙ !PC ∙ ND;
 f DC = f DC ∙ !state_0x;
 f ON = f ON ∙ !state_0x;
 state_x1 = PD ∙ !ND ∙ NC;
 f DC = f DC ∙ !state_x1;
 f ON = f ON + state_x1;
}

Figure 8. Pseudo-algorithm for the unatization process.

A Domain-Transformation Approach to Synthesize Read-Polarity-Once Boolean Functions
Callegaro, Martins, Ribas & Reis

66 Journal of Integrated Circuits and Systems 2014; v.9 / n.1:60-69

lines 5-6 in Fig. 8), as these lines represent impossi-
ble input conditions. The next step is to guarantee that
both variables (xi and not_xi) became positive unate af-
ter the domain transformation.

The fix_positive_unate method is based on the
definition of unateness shown in (5). Let xi be the vari-
able to be fixed, Y={0,1,X} and {tpi,tni} ∈ Y be a term
in the line i of the truth table when f(xi=1) and f(xi=0),
respectively. The following two states need to be fixed:

tpi =0 and tni = X (18)
tpi =X and tni = 1 (19)

In (18), if tni receives the logic value 1 the function
becomes binate. The same happens in (19) if tpi re-
ceives the value 0. In order to avoid both situations,
the method fix_positive_unate (see lines 13 to 24 in Fig.
8) properly assign values to the don’t care terms that are
responsible for these cases.

Empirical results have shown that the unatiza-
tion runtime is irrelevant in the entire flow to synthe-
size RPO functions. The runtime of the ISF2RO algo-
rithm is currently the main bottleneck.

C. ISF2RPO: An algorithm to factorize RPO
functions

After presenting the ISF2RO algorithm and the
unatization process, we are able to describe the en-
tire flow of the RPO factoring algorithm. The com-
plete algorithm proceeds in two main steps. The first
step reads an ISF f and computes the polarity of the
variables. Every binate variable is split into two sep-
arate positive unate variables according to the unati-
zation process. The second step performs the search
(ISF2RO) for an RO expression for the ISF resulting
from the domain transformations. If ISF2RO returns
an RO output, the expression is then rewritten con-
sidering the original variables as they were presented
before the domain transformation. The flowchart of
the proposed algorithm is presented in Fig. 9.

The time complexity of the RPO algorithm is
bounded by the complexity of the ISF2RO algorithm.
Experimental results have demonstrated that the RPO
algorithm can efficiently find optimal solutions for
functions with up to 16 literals.

V. EXPERIMENTAL RESULTS

This section presents an investigation of the oc-
currence of RPO functions over distinct set of func-
tions. The first analysis was performed over the set of
functions with up to 5 variables grouped under NPN-
equivalency [19], where NPN stands for the opera-
tions of input negation (first N), input permutation
(P) and output negation (second N). We refer to this
set of functions as NPN-groups. The second experi-
ment analyzes the occurrence of RPO functions over
the ISCAS’85 benchmark circuits [14]. The last exper-
iment was carried out for a set of Boolean functions
that are important in the context of logic brick design
[20]. The platform used to obtain the results was a
Linux system on Intel Core i5 2400 processor with
2GB main memory.

A. Occurrence of RPO functions over 5-inputs
NPN-group

The first experiment was carried out over the
set of all 5-input Boolean functions, reduced under
NPN-equivalence into a set of 616,125 representa-
tive functions (denoted as NPN-Group). To run the
algorithm for all these functions, the execution time
was 4 minutes. The worst case runtime for a single
function was 800 ms, while the average case was less
than 1 ms.

For the universe of 5-input NPN-group func-
tions, there are 1,462 functions that are classified as
RPO, while only 21 functions are classified as RO.
This means that there are approximately 70 times
more RPO functions compared to RO functions of
up to 5-inputs. Our results have demonstrated that the
universe of RPO is broader than the universe of RO
functions, for which many works have been devoted
[10-12][17][18].

Comparative results evaluating the efficiency of
the proposed algorithm are shown in Table V, consid-
ering the set of 1,462 RPO functions in the 5-input
NPN-Group. Our algorithm presented better results
in terms of number of literals than Quick Factor (QF)
[21], Good Factor (GF) [21], ABC [22] and X-Factor [3]
[4] tools. The proposed algorithm gives better results,
when compared to previously published approaches, as
it finds the exact solution for RPO functions.

Figure 9. ISF2RPO flow chart.

Table V. Total runtime and number of literals obtained to factor
1,462 RPO functions using different approaches.

QF
[21]

GF
[21]

ABC
[22]

X-Factora

[3][4]
RPO

(this paper)

Literals 16,086 15,671 15,981 13,253 13,064

Runtime 1.9s 2.3s 2.0s 7.1s 5.7s
a Results of an in-house implementation of the X-Factor algorithm.

A Domain-Transformation Approach to Synthesize Read-Polarity-Once Boolean Functions
Callegaro, Martins, Ribas & Reis

67Journal of Integrated Circuits and Systems 2014; v.9 / n.1:60-69

B. Occurrence of RPO functions over ISCAS’85
benchmark

We have also performed an investigation of the
occurrence of RPO functions over ISCAS’85 bench-
mark circuits. Such analysis has been carried out in
order to figure out the frequency of RPO functions
in comparison to RO functions in mapped circuits.
We have extracted functions with up to 8 inputs from
the benchmarks circuits by using k-cuts [23]. These
functions were grouped by equivalence under input
permutations (P) [19], and the resulting groups are
denoted as P-groups. In Table VI, the term Occurrences
represents the number of functions before grouping it
into P-groups of equivalence.

We have selected the functions in two ways.
Table VI summarizes the results regarding all possible
functions with up to 8 inputs in the circuits. In Table
VII, the functions represent a circuit cover selected by
performing an AIG greedy covering algorithm [23].
Similarly to RO functions, the number of RPO func-
tions decreases as the number of variables increases.
This is an expected result, as Boolean functions with
more inputs tend to be more complex.

In Table VIII, it is possible to verify the runtime
for synthesizing all functions with k-cuts up to k = 8.
Table IX shows the runtime of the algorithm to synthe-
size the functions extracted from a circuit cover. The

results show the efficiency of the proposed ISF2RPO
algorithm.

Experiments carried out over ISCAS’85 bench-
mark circuits have demonstrated that RPO functions
are significantly more frequent than RO functions.

C. Occurrence of RPO functions over functions
for logic brick design

The last experiment was carried out over a
benchmark of important functions for logic brick de-
sign. According to [20], a set of logic functions can be
added to a cell library to significantly improve specific
designs. In one of the examples given by Motiani et
al, a set of 12 distinct functions were added to a li-
brary. Out of the 12 functions added, 6 were RO, 10
were RPO (including the 6 RO that are also RPO)
and only 2 are not RPO functions. These functions are
presented in Table X. This observation highlights the
importance of the RPO class for different technolo-
gies, including the logic brick methodology proposed
by Montiani et al.

Table VI. Analysis of functions from ISCAS’85 benchmark cir-
cuits.

RO RPO
Inputs P-Groups Occurrences P-Groups Occurrences

2 67% 84% 100% 100%
3 53% 66% 90% 88%
4 44% 54% 85% 71%
5 37% 42% 69% 53%
6 33% 36% 57% 46%
7 34% 36% 52% 47%
8 32% 34% 46% 44%

Table VII. Functions selected from ISCAS’85 benchmark circuits
using a greedy covering algorithm [23].

RO RPO
Inputs P-Groups Occurrences P-Groups Occurrences

2 78% 93% 100% 100%
3 59% 63% 87% 94%
4 49% 53% 78% 81%
5 35% 36% 79% 81%
6 41% 39% 63% 60%
7 45% 43% 62% 57%
8 14% 15% 27% 27%

Table VIII. Runtime for synthesizing all k-cut functions (k = 8).

Circuit P-Groups Time (s) Avg. time (s)
C1355 680 123.4 0.18
C17 12 0.01 0.01
C1908 1,224 133.1 0.11
C2670 6,345 284.6 0.04
C3540 9,275 123.9 0.01
C432 844 3.2 0.01
C499 432 98.1 0.23
C5315 11,350 806.4 0.07
C6288 142 0.6 0.01
C7552 17,888 8045.1 0.45
C880 1,691 86.3 0.05

Table IX. Total runtime for synthesizing functions selected by a
greedy covering algorithm [23].

Circuit P-Groups Time (s) Avg. time (s)
C1355 16 3.70 0.23
C17 3 0.01 0.01
C1908 44 2.37 0.05
C2670 68 39.53 0.58
C3540 129 1.29 0.01
C432 25 0.15 0.01
C499 10 0.89 0.09
C5315 108 58.07 0.54
C6288 38 0.20 0.01
C7552 130 8.42 0.06
C880 36 18.08 0.50

A Domain-Transformation Approach to Synthesize Read-Polarity-Once Boolean Functions
Callegaro, Martins, Ribas & Reis

68 Journal of Integrated Circuits and Systems 2014; v.9 / n.1:60-69

VI. CONCLUSIONS

This paper discussed in depth the recently pro-
posed concept of read-polarity once (RPO) functions
[13]. The major contributions of this work are: (1)
an algorithm for factoring incompletely specified func-
tions into read-once (RO) equations; (2) a domain
transformation that splits existing binate variables into
two independent unate variables; and (3) a complete
algorithm for exact factoring of RPO functions.

The proposed algorithm was implemented and
compared to existing factoring algorithms, showing
that it guarantees minimal factored forms for the class
of RPO functions. Out of the set of 616,125 NPN-
grouped functions with up to 5-inputs, 1,462 func-
tions were identified as RPO, while only 21 functions
are RO. Moreover, experimental results taking into
account ISCAS’85 benchmark circuits have shown
that RPO functions are quite more frequent in circuits
than RO functions. Furthermore, the RPO class of
functions is also important for different technologies,
including the logic brick methodology proposed by
Motiani et al [20], as demonstrated by the large num-
ber of RPO functions (10 out of 12) given as example
in [20]. The entire flow to factorize RPO functions
has been validated, and our implementation has been
able to find optimal solutions of functions with up to 8
binate variables in a reasonable runtime.

Both the ISF2RO and the ISF2RPO algorithms
were implemented and integrated in the SwitchCraft
[24] framework. SwitchCraft provides a set of tools for
switch network and logic gate generation.

ACKNOWLEDGEMENTS

Research partially funded by Nangate Inc. un-
der a Nangate/UFRGS research agreement, by CAPES
and CNPq Brazilian funding agencies, by FAPERGS
under grant 11/2053-9 (Pronem), and by the European
Community’s Seventh Framework Programme under
grant 248538 – Synaptic.

REFERENCES

[1] R. K. Brayton, “Factoring logic functions,” IBM Journal of
Research and Development, vol. 31, no. 2, Mar 1987, pp.
187-98.

[2] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification
Algorithms, Springer, 2006, p564.

[3] M. C. Golumbic and A. Mintz, “Factoring logic functions using
graph partitioning,” in Proceedings of Int’l Conf. on Computer-
Aided Design (ICCAD). 1999, pp. 195-199.

[4] A. Mintz and M. C. Golumbic, “Factoring Boolean functions
using graph partitioning,” Discrete Applied Mathematics, vol.
149, no. 1–3, 2005, pp. 131-53.

[5] T. Stanion and C. Sechen, “Boolean division and factorization
using binary decision diagrams,” IEEE Transactions on CAD,
vol. 13, no. 9, Sep. 1994, pp. 1179-84.

[6] E. L. Lawler, “An approach to multilevel Boolean minimiza-
tion”, Journal of the ACM, vol.11, no. 3, July 1964. pp. 283-95.

[7] H. Yoshida, M. Ikeda and K. Asada, “Exact minimum logic
factoring via quantified Boolean satisfiability,” in Proceedings
of IEEE Int’l Conf. on Electronics, Circuits and Systems
(ICECS), Dec. 2006, pp. 1065-68.

Table X. Set of 12 distinct functions given by Motiani et al [20] where 10 were RPO functions.

Original Read-polarity-once form

p0p1!p3+p2!p3+p4p5 ((((p1 p0) + p2) !p3) + (p5 p4))

p0p1!p3+!p3!p4+p1p2!p3 ((((p2 + p0) p1) + !p4) !p3)

p1p3p6+p0!p2p5+p3p4p6+!p1!p2!p4 (!p4 !p1 + p0 p5) !p2 +p6 p3 (p4 + p1)

!p1!p2p3+!p0!p1p3+p1!p3+p0p2!p3 ((((p2 p0) + p1) !p3) + ((!p1 p3) (!p0 + !p2)))

p1!p4+!p0!p3+p1!p3+!p2!p4+!p0!p4+!p2!p3 (((!p0 + p1) + !p2) (!p3 + !p4))

p0p2+p1p2+p3p4 (((p1 + p0) p2) + (p4 p3))

!p1!p2+p4p5+!p6!p7+p0p3 (((!p1 !p2) + (p3 p0)) + ((!p6 !p7) + (p4 p5)))

p1p3p4+p0p2p3p4+!p1!p2!p3p4+!p0!p1!p3p4+!p1!p2p3!p4+p1!
p3!p4+p0!p1p2!p4 Non-RPO

p0!p3!p5+!p0!p1p2+p2p3p4+p1!p4!p5+p1!p3!p5+p0!p4!p5 (p4 p3 + !p1 !p0) p2 + (!p3 + !p4) !p5 (p0 + p1)

!p0!p1p2+!p0p1!p3+p0p1p2+p0!p1!p3 Non-RPO

!p1!p2!p3+p0!p3+!p1!p2!p4+p0!p4 (((!p1 !p2) + p0) (!p4 + !p3))

!p0!p1p4+!p2p4+p0p2!p3+p1p2!p3 ((((p1 + p0) p2) + p4) ((!p1 !p0) + (!p3 + !p2)))

A Domain-Transformation Approach to Synthesize Read-Polarity-Once Boolean Functions
Callegaro, Martins, Ribas & Reis

69Journal of Integrated Circuits and Systems 2014; v.9 / n.1:60-69

[8] H. Yoshida and M. Fujita, “Exact minimum factoring of incom-
pletely specified logic functions via quantified Boolean satis-
fiability,” IPSJ Trans. on System LSI Design Methodology, vol.
4, Feb. 2011, pp. 70-79.

[9] M. G. A. Martins, L. S. Rosa Jr, A. B. Rasmussen, R. P. Ribas
and A. I. Reis, “Boolean factoring with multi-objective goals,”
in Proceedings of IEEE Int’l Conf. on Computer Design
(ICCD), 2010, pp. 229-234.

[10] M. C. Golumbic, A. Mintz and U. Rotics, “Factoring and rec-
ognition of read-once functions using cographs and normali-
ty,” in Proceedings of Design Automation Conference (DAC),
2001, pp. 109-14.

[11] M. C. Golumbic, A. Mintz and U. Rotics, “An improvement
on the complexity of factoring read-once Boolean functions,”
Discrete Applied Mathematics, vol. 156, no. 10, May 2008,
pp. 1633-1636.

[12] T. Lee and C. Wang, “Recognition of fanout-free functions,”
in Proceedings of Asia and South Pacific Design Automation
Conference (ASP-DAC), Jan. 2007, pp. 426-31.

[13] V. Callegaro, M.G.A. Martins, R.P. Ribas and A.I. Reis, “Read-
polarity-once Boolean functions,” in Proceedings of Integrated
Circuits and Systems Design (SBCCI), 2013, pp. 1-6.

[14] IWLS 2005 Benchmarks: http://iwls.org.

[15] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen
and G. D. Hachtel, Logic Minimization Algorithms for VLSI
Synthesis. Kluwer Academic Publishers, Norwell, MA, USA.
1984.

[16] J. P. Hayes, “The fanout structure of switching functions,”
Journal of the ACM, vol. 22, no. 4, Oct. 1975, pp. 551-71.

[17] J. Peer and R. Pinter, “Minimal decomposition of Boolean
functions using non-repeating literal trees,” in Proceedings of
IFIP, 1995.

[18] V. Gurvich, “Criteria for repetition-freeness of functions in the
algebra of logic,” Soviet Math. Dokl, vol. 43, no. 3, 1991, pp.
721–726.

[19] V. P. Correia and A. I. Reis, “Classifying n-Input Boolean
Functions,” in Proceedings of IBERCHIP, 2001, pp. 58-66.

[20] D. Motiani, V. Kheterpal and L. T. Pileggi, “Method for the defi-
nition of a library of application-domain-specific logic cells,”
United States Patent 7784013, 2010.

[21] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. Stephan, R. Brayton and A. L.
Sangiovanni-Vincentelli, “SIS: A system for sequential cir-
cuit synthesis,” Tech. Rep. UCB/ERL M92/41, UC Berkeley,
Berkeley, 1992.

[22] Berkeley Logic Synthesis and Verification Group, ABC: A
System for Sequential Synthesis and Verification, Release
051205, [Online] http://www.eecs.berkeley.edu/~alanmi/abc/.

[23] O. Martinello Jr., F. S Marques, R. P. Ribas and A. I. Reis, “KL-
cuts: a new approach for logic synthesis targeting multiple
output blocks,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE), 2010, pp. 777-82.

[24] V. Callegaro, F. S. Marques, C. E. Klock, L. S. da Rosa Jr., R.
P. Ribas and A. I. Reis, “SwitchCraft: a framework for transis-
tor network design,” in Proceedings of the 23rd Symposium
on Integrated Circuits and System Design (SBCCI), 2010, pp.
49-53.

