
I Student Forum on Microelectronics 1

SimPL: An Object-Oriented Methodology for Modeling the
Precise Behavior of Processor Architectures

João Cláudio S. Otero, Flávio R. Wagner
{jcotero, flavio}@inf.ufrgs.br

Federal University of Rio Grande do Sul - UFRGS
Computer Science Institute
Porto Alegre – RS – Brazil

Abstract

This paper presents SimPL, an object-oriented methodology for modeling
processor behavior with precise timing, which may be used as a basis for both
teaching and design environments.

1 Introduction

Environments for modeling current state-of-the art processor architectures serve one of
two main purposes: teaching and design. Teaching environments (such as WinDLX [WIN]
and Escape [ESC]) are usually oriented to a base processor that can be modified in a limited
way. Design environments, in turn, usually offer powerful languages (such as Lisa and
Expression) for modeling various processor architectures classes and must automatically
generate retargetable tool suites. SimPL is a processor design methodology (and not a
language with some fixed set of constructs), based on a specialized class library developed
on top of a general-purpose modeling and simulation framework – SIMOO [SIM 97]. In
SimPL, the processor modeling process automatically results in a simulator with built-in
interactive resources for tracking and controlling experiments. For the moment, the
methodology does not generate other tools, such as compilers or assemblers, and generation
of the simulator code is not aimed at high performance.

2 The SimPL Modeling Methodology

The SimPL modeling methodology explicitly divides a processor into
MAIN_CONTROL and DATAPATH blocks. Each of these blocks is an aggregation of
control elements (INSTRUCTION_SET and EXECUTION) and functional elements
(MEMORY, REGISTER...), respectively. Futhermore, information elements are used for
building a bridge between the control and datapath blocks.

The datapath block does not model physical connections between the functional
elements. Connections are implicitly defined by means of the behavior specified by the
control elements. This behavioral approach makes the architecture definition very flexible.
Functional elements may be more easily replaced or introduced, because their
interconnections do not need to be modeled.

Each functional, information or control element is implemented as a class, which
presents micro-operations as an interface to the other elements. These micro-operations are
messages capable of firing specific methods that implement operations within the elements.

2 I Student Forum on Microelectronics

Control elements define the processor behavior as sequences of these micro-operations,
but they do not directly call methods of the functional elements. They communicate only
with the aggregating DATAPATH element. This element thus redirects the messages to its
aggregated functional elements, by calling the corresponding methods.

With this approach, the class diagram that models the processor does not contain direct
connection relationships between a control element and all the functional elements it may
control. If these direct relationships were necessary, the class diagram would be much more
complex.

Micro-operations typically define interactions between functional elements. As an
example, suppose we need to transfer the contents of register REG to input Inp of the
functional element ALU. A control element would execute the following micro-operation,
wich is implemented as a method that is local to this element:

 ALU_SET(Inp,REG_CONTENTS())
As a result of this method, a message is sent to the aggregating element DATAPATH,

requesting it to execute method SET of functional element ALU with two parameters (the
last one is another micro-operation REG_CONTENTS with a similar format). These micro-
operations implicitly create a path from register REG to ALU.

3 Defining Processor Control

Control elements, from types MAIN_CONTROL, INSTRUCTION_SET and
EXECUTION, interact with each other to define the overall processor control behavior.

INSTRUCTION_SET is an element that defines each processor instruction as a set of
instruction steps. In turn, each instruction step is a set of micro-operations to be executed in
parallel. As already explained, each micro-operation specifies operations in functionl
elements and implicitly defines datapaths between the functional elements. An instruction
step is executed at once each time the instruction is fired. However, the
INSTRUCTION_SET element does not enforce any timing relationship between the steps.

An INSTRUCTION_SET element may define complete instructions as well as
instruction fragments, to be hierarchically used within other instructions or instruction
fragments. This feature may be used to model instruction fragments that are common to
various instructions, such as a fetch operation or a memory access using a particular
addressing mode.

EXECUTION is the control element that orders the execution of all instructions steps,
according to a selected execution mode. Depending on the mode, several firings may be
necessary to complete the execution of all steps defined for an instruction. Each firing may
be executed, for instance, at a consecutive clock cycle, but alternative timing schemes may be
implemented. EXECUTION may use one of the following execution modes: single-cycle
mode – all instruction steps of an instruction are executed in a single firing; multi-stepped
mode – each firing executes a certain number of instructions steps; and multi-cycle mode –
each firing executes a single instruction step.

The execution of the instructions or instruction fragments is ordered by the
MAIN_CONTROL element, wich is the topmost level of the control block hierarchy and
defines the overall processor control, as well as a concrete timing behavior.

I Student Forum on Microelectronics 3

MAIN_CONTROL uses micro-operations of the EXECUTION element to implement the
overall control, according to a given timing behavior.

4 Case Study: Modeling the DLX Processor

DLX is a general-purpose, hypothetic RISC processor, defined by Patterson and
Hennessy [PET 96]. The processor has a 5-satage pipeline, where stages are identified as
Instruction Fetch, Instruction Decode, Execution, Memory Access, and Write Back to
Register or Memory. The first two stages are identical for all instructions.

Modeling the DLX datapath with the SimPL methodology is straightforward. The
DATAPATH element aggregates all functional elements. The basic SimPL library already
contains classes that implement all datapath elements of the DLX processor. These classes
must be only instantiated and parameterized. After all datapath elements have been
instantiated, they make a large set of micro-operations available to the control elements.

op2 = NOP; op3 = NOP; // pipeline is initially empty
while(true) {
 EX(InstrFetch);
 EX(InstrDecode);
 EX(op1 = DECODE (),1); // executes step 1 of instruction decoded in op1
 EX(op2,2); // executes step 2 of instruction op2
 EX(op3,3); // executes step 3 of instruction op3
 op3 = op2; // instructions advance through the pipeline...
 op2 = op1;
 wait(1);} // simulation advances to the next clock cycle

Figure 1 - MAIN_CONTROL for the DLX processor.

The MAIN_CONTROL element contains an EXECUTION element, which will be
responsible for invoking micro-operations that correspond to each instruction, as defined in
the INSTRUCTION_SET element, which is instatiated within EXECUTION.

The INSTRUCTION_SET element defines the four DLX instructions types in a
hierarchical way. For each instruction, this element defines three instruction steps. They
correspond to the pipeline stages EX, MEM, and WB, which are distinct for each instruction.
Each of these stages is defined as a set of micro-operations. The pipeline stages IF and ID,
which are identical for all instructions, are modeled by two instruction fragments InstrFetch
and InstrDecode and invoked directly from the MAIN_CONTROL element. The
EXECUTON element invokes instructions (in fact: invokes micro-operations that are made
available by INSTRUCTION_SET) in a multi-cycle mode, where each processor cycle
executes a single instruction step.

The overall control behavior and timing are defined within MAIN_CONTROL, as
shown in Figure 1. Instruction fragments InstrFetch and InstrDecode are invoked first, to
execute micro-operations corresponding to stages IF and ID.

The information element DECODE monitors all updates to
INSTRUCTION_REGISTER, a datapath element defined within the hierarchy of

4 I Student Forum on Microelectronics

DATAPATH, and returns an instruction inst to be executed by micro-operation EX(op1 =
DECODE(),1). This information element is necessary because the control block, according to
the SimPL approach, does not have a direct association to each functional element within the
datapath block. The information element may obtain the information and pass it to the
control block.

The movement of instructions through the pipeline is modeled by auxiliary variables
op1 thru op3. All 5 pipeline stages are executed in parallel, and instructions move to the next
stage also in parallel. The SIMOO function wait(1) advances the simulation clock and leads
the processor to the next cycle.

5 Conclusion

This paper presented the SimPL methodology for modeling the precise behavior of
processor architectures. SimPL is built on top of SIMOO, a general-purpose framework for
object-oriented modeling and simulation of discrete systems. From a given processor model,
the methodology makes it extremely easy to obtain a new one, with a different timing
behavior, or with a different set of instructions. Full exploitation of object orientation greatly
enhances the capabilities for deriving new processor models from old ones. A model of the
DLX processor is being implemented as a validation strategy.

6 References

[ESC] VERPLAETSE,P. ESCAPE v1.1 Manual. Available by WWW at
 http://www.elis.rug.ac.be/escape
[EXP 99] HALAMBI,A. et al. EXPRESSION: A Language for Architecture Exploration
 through Compiler/Simulator Retargetability. In:Proceedings of DATE 99 – Design,
 Automation and Test in Europe. Munich, Germany, March, 1999.
[LIS 99] PEES,S. & HOFFMANN,A. & ZIVOJNOVIC,V. & MEYR,H.: “LISA – Machine
 Description Language for Cycle-Accurate Models of Programmable DSP
 Architectures”. In: Proceedings of the 36th Desgin Automation Conference. New
 Orleans, USA, June 1999.
[PET 96] PATTERSON, D. A . & HANNESSY, J.L. Computer Architecture: A
 Quantitative Approach. Morgan Kaufmann Publishers, Inc, 1996.
[SIM 97] SIMOO – An Environment for the Object-Oriented Discrete Simulation. In:
 Proceedings of ESS 97 – 9th. European Simulation Symposium. Passau, Germany,
 October 1997.
[WIN] GRENBACHER,H. WinDLX Tutorial – A First Example. Available by E-mail at
 maziar@vlsivie.tuwien.ac.at

