
Fast Fourier Transform Implementation
Using a Programmable Logic Device

Maria Ame lia Cardoso Aquiles1, Cristiano W. Fanchin1, Sandra M. Riedo1,

Gabriel Kovalhuk1,2, Mauricio Kugler3,4

1Concurrent Engineering R&D Lab (NuPES)
2Electronics Department (DAELN)

3Graduate School in Electrical Engineering and Industrial Computer Science (CPGEI)
4Laboratory of Embedded Systems Innovation & Technology (LIT)

Federal Center for Education in Technology (CEFET-PR)
Av. Sete de Setembro, 3165 - Curitiba/PR, Brazil - CEP 80230-901

aquiles@nupes.cefetpr.br (author), cristiano@fanchin.net (author), sandra_riedo@hotmail.com (author),
kovalhuk@nupes.cefetpr.br (advisor), mauricio@kugler.com (collaborator)

Abstract ’ This article describes the modeling of a Fast Fourier Transform algorithm in a programmable logic
device. The project was partially described using state-machine description tools, while other specific blocks
were described directly in VHDL language. The system comprises an A/D converter interface block, a FIFO
memory with 256 positions, a state-machine to control the operations and memories for calculus and
coefficients. The FFT calculation is sequentially made using a combinational two points FFT block and a
multiplier. The practical tests were run using a microprocessed signal generation block, which provides the input
vectors in digital form. Statistics about logic cells utilization were made for the system blocks, which can be
synthesized in only one device. This work will be part of a master dissertation about eletroencephalographic
signals analysis and pattern recognition.

Key words: FFT, VHDL, Programmable Logic Devices.

INTRODUCTION

One of the most used techniques in digital
signal processing is the frequency spectrum
calculation through the Fourier Transform.

The motivation for this work is the necessity
to implement a very fast FFT calculation, using the
speed, parallel processing capabilities and the very
simple external circuitry of programmable logic
devices. This system will be part of a master
dissertation about electroencephalographic signals
analysis and pattern recognition [2][3].

METHODOLOGY

The systemçs functional description was made
in two different ways. Part of the project was
described using the software Renoir, from Mentor
Graphics, which generates the code in VHSIC

Hardware Description Language (VHDL) from the
state machines. The remaining parts of the project
were directly described in VHDL [4].

The systemçs block diagram is shown in Figure
2. The ad_ctrl block generates the necessary signals
to the A/D converter interface. After the
conversion, the data is received and written into a
FIFO memory (First In, First Out) with 256
positions, which corresponds to the fifo block. The
256 values of this FIFO memory are read and
stored in a RAM memory (Random Access
Memory), composed by two columns of 256 lines
each (ram_fft block).

The FFT processing, triggered by the start_fft
signal, is managed by a state-machine, with its
simplified diagram shown in Figure 1.

Resets lines and columns counters;
Transfers the FIFO data to the calculus

memory. Reads X0 and X1 values and W
coefficient;

Applies these values in the 2 point FFT.
Saves the F0 result in the memory;
Multiplies F1 by the W coefficient.

Saves F1 result in the memory;
Increments the line counter.

Last Line?

Resets the line counter;
Increments the column

counter.

Last
column?

no

Calculates the module
and gives the results.

Waits for the start of
FFT calculus.

S1
S2

S3 S4

S5

S6

S0 yes

yes

no

Figure 1 - FFT control state-machine

ad_ctrl

busy
rc
cs

ad_data(15:0)

clock
reset

fifo

mem
256x12

data_in_fifo (11:0)

WE_fifo

address_rom(15:0)
RE_rom
data_rom(15:0)

reset
clock

rom_W

mem
128x32

ram_fft

mem
512x32 spectr_data(7:0)

start_fft

data_r_ram(15:0)
RE_ram
address_ram(7:0)

rom_
module

mem
512x8

data_w_ram(15:0)
WE_ram RE_mod

data_mod(7:0)

mode
address_mod(7:0)

RE_fifo
data_fifo(11:0)

clock

data_out_fifo
(11:0)

RE_fifo

fft_ctrl

reset
clock

clock

clock

Figure 2 - FFT block diagram

The 256 points FFT calculation is sequentially
made by a two points FFT block (Figure 3), which
makes a sum and a subtraction in parallel, and then
multiplies the subtraction result by its
corresponding coefficient W [1]. The coefficients
are stored in a ROM memory (Read Only
Memory). The ROM, read once per iteration,
corresponds to the rom_w. The data from each FFT
stage are stored in one of the two ram_fft block
columns, which are alternatingly used during the
FFT calculation.

X(0)

X(1)

F(0)

F(1)m
NW

+

-
Figure 3 - Two-point FFT block diagram

The required result is the frequency spectrum
module. As the FFT result is achieved in the
rectangular complex form format, it is necessary to
calculate the module of the coordinates. This is
done via the square and square root tables, stored in
the rom_module memory. The numeric
representation used internally is 16 bit fixed-point,
but the results are truncated to 8 bits for the module
calculation.

The systemçs functional simulation, run using
ModelSim software, from Model Technology,
provided very good results comparing with the
expected ones using equations. The logical
synthesis and the optimization were done using the

Leonardo Spectrum software, from Exemplar, to an
Alteraçs FPGA.

RESULTS

In order to validate the results, the system
was loaded into an ACEX1k50 FPGA. The logic
cells and memory bits utilization statistics were
generated by Leonardo software (Table 1).

To provide a direct visualization of the
generated values, a spectrum analyzer was
implemented using the FFT core and, apart from
the FFT calculation, VGA video signals are also
generated. Thus, itçs possible to connect a video
monitor straight to the system and have a direct
visualization of the frequency spectrum. In order to
accomplish the test, two FPGA development kits
were used, one of them containing a FLEX10k
already connected to a VGA connector.

Table 1 - ACEX1k50 component utilization

BLOCKS LOGIC CELLS MEMORY BITS
ad_ctrl 32 -

Fifo 37 3072
fft_ctrl 784 -

rom_module 08 4096
rom_w 32 4096
ram_fft 01 *

FFT (total) 894 11264
acex1k (total) 2880 40960

* instantiate the lpm_ram_dq component, from Alteraçs
library.

CONCLUSIONS

All the algorithms have been successfully
tested. These tests were run using a microprocessed
board to generate the test vectors that fed the
spectrum analyzer inputs, directly in digital form.

The A/D converter interface hasnçt been tested
due to the noise generated by the FPGA. An
ongoing new version is already taking the noise
problems into consideration.

Due to the small number of used logic cells,
this FFT core can be used in a lot of programmable
logic systems that requires very fast digital signal
processing. The VGA core that was implemented
using another development kit could be fitted in the
same FPGA of the FFT core. The second kit was
used only because it already has a VGA connector.

The result module calculation, which is
currently made using a memory table, will be made
by a coordinate rotation algorithm (CORDIC) that
is currently being implemented. This will improve
the precision of the calculated values.

REFERENCES

[1] AQUILES, M. A. C., Implementacao de
Multiplicador Digital em Dispositivos
Logicos Program�veis Utilizando VHDL.
VI Semina rio de Iniciac õ Cientıfica e
Tecnologica CEFET-PR, p.169-172,
2001.

[2] BANERJEE, A., DHAR, A. S., BANERJEE,
S. FPGA realization of a CORDIC based
FFT processor for biomedical signal
processing. Microprocessors and
Microsystems, v.25, n.3, p.131-142, 2001.

[3] BOTROS, N., ZAKHEM, W., FFT Processor
Using Programmable Gate Arrays.
Proceedings of Fifth Annual IEEE
International ASIC Conference and
Exhibit, p.115’118, 1992.

[4] PERRY, DOUGLAS. VHDL. 3rd ed.
McGraw-Hill, 1998.

[5] RABINER, L. R., Theory and Application of
Digital Signal Processing, Prentice Hall,
1975.

