
LEADING BIT POSITION DETECTOR FOR NORMALIZATION OF
FLOATING POINT NUMBERS - A 24-BIT PRIORITY ENCODER

T.T.B. Taiser1 & A.L. Aita2

Universidade Federal de Santa Maria – UFSM
Centro de Tecnologia – CT

Departamento de Eletrônica e Computação – DELC
1E-mail: barros@mail.ufsm.br.br

2E-mail: aaita@inf.ufsm.br

Abstract - this paper presents the design of a 24-bit priority
encoder working as a leading bit position detector, which is
necessary in the normalization step in floating point addition
operations. The 24-bit encoder is constructed with 8-bit
cascadable encoders. This encoder has a 24-bit input and a 5-bit
output code, which informs the number of left shifts necessary
to normalize the result.

I. Introduction

The floating point addition is described usually as a 4-

step procedure [HEN 96]: binary point alignment, addition,
normalization and rounding. The normalization step is
necessary because the addition/subtraction of two normalized
number can result in a non-normalized one. In this case, this
result should be normalized.

According to IEEE754/85 standard, the number is
normalized if its significand has the following format:

1 . xx … x (b0 . b1 b2 … b23)

After a sum, if a carryout occurs, the result will have a

different format, but normalization is easily performed by
one right shift. The main problem occurs when two numbers
are subtracted. In this case, cancellation is possible and the
first significant one (the leading bit) can be anywhere along
the significant. So, the number of left shifts is unknown a
priori.

A priority encoder [WAK 00] is proposed as a solution,
since the code it outputs, informs the position of the leading
bit and thus the number of left shifts required to normalize
the result.

Since the single precision floating point arithmetic
deals with a 24-bit word, a 8-bit cascadable encoder was first
designed, serving as a basic building block for the 24-bit
leading bit detector.

II. 8-bit Priority position encoder

The 8-bit priority encoder is defined in the tab. I, and

its representation is shown in fig. 1. It has 9 inputs, the 8-bit
word and the enable-in signal Ein. It has 5 outputs, the 3-bit
code Ci, the zero signal Z0 and the enable-out signal Eout.
The 3-bit code Ci informs the number of left shifts necessary
to normalize the number according to the position of the first
significant bit. The enable signals are necessary to allow the
cascading of encoders.

Table I

 8-bit priority encoder truth table

Figure. 1 – 8-bit priority encoder

The Boolean equations of the encoder, obtained

after some algebraic manipulation, are shown in the
Table. II.

Table II
 Encoder outputs

The logical and electrical designs of the 8-bit
encoder are shown in fig. 2 and fig. 3, respectively.

(a)

(b)

(c)

(d)

Figure. 2 – 8-bit priority encoder logical schematic,
showing (a) C2, (b) C1, (c) C0 and

 (d) Eout and Z outputs

(a)

(b)

(c)

(d)

Figure. 3 – 8-bit priority encoder electrical
schematic, showing (a) C2, (b) C1, (c) C0 and

 (d) Eout and Z outputs

III. 24-bit Priority encoder - The leading bit
position detector

The 24-bit encoder was implemented cascading

three 8-bit encoder just presented. The 8-bit encoder
outputs are used as input to the last stage of the 24-bit
encoder, that generates a 5-bit coded number, which
informs a programmable shifter how many left shifts
should be done in the normalization step, fig. 4 shows
the block diagram of this encoder while Table. III
shows the final leading bit detector truth table.

Figure. 4 – 24-bit priority encoder block diagram

Table III
24-bit priority encoder truth table

Inputs Outputs
Z0 Z1 Z2 F4 F3 F2 F1 F0 Z
0 x x 0 0 C2 C1 C0 0
1 0 x 0 1 C2’ C1’ C0’ 0
1 1 0 1 0 C2’’ C1’’ C0’’ 0
1 1 1 0 0 0 0 0 1

IV. Simulation Results

Logical and electrical simulations were performed. The

logical simulation was performed within Xilinx Foundation
Environment to verify the logical functioning of the circuit,
fig. 5 shows the logical simulation of the final circuit.

Figure. 5 – 24-bit encoder: leading bit detector logical

simulation

V. Layout

The Tropic3 [MOR 00] tool was used to generate the

24-bit encoder layout. The circuit description at gate level is
the input of the tool. The output is the circuit layout (.cif
file), which can be visualized with the layout editor Edllex
[MOR 00]. An example of the Tropic3 input description is
shown in Table. IV and the layout generated for the 24-bit
encoder is shown in fig. 6.

Table IV
 (a) Logic circuit, (b) Tropic3 description

Figure. 6 – 24-bit priority encoder layout

VI. Conclusions

The normalization step in the floating-point

subtraction depends on the position of the result-
leading bit. To determine its position, a 24-bit priority
encoder was proposed. Initially, an 8-bit cascadable
encoder was designed. The Boolean equations and
logical circuits were determined from its truth table.
The electrical circuits were also designed. Then, three
8-bit encoders were cascaded, and the full encoder
constructed. Logical and electrical simulation were
performed to verify the functioning of the final circuit
and to identify worst delays. After simulations, an
automatic layout generator tool, Tropic3, generated
the leading bit layout.

VII. References

[HEN 96] David A. Patterson e John L. Hennessy.

Computer Architecture: A Quantitative Approach.
2o. ed. Academic Press. 1996

[IEE 85] IEEE Standard for Binary Floating-

Point Arithmetic. ANSI/IEEE754-1985, New York,
1985.

[MOR 00] MORAES, Fernando Gehm.

Anatomia de uma Ferramenta de Síntese
Automática de Layout. Technical Report Series,
Agosto de 2000.

[WAK 00] Wakerly, John F., Combinational

Logic Design Practices, Editora Prentice – Hall
International Editions, 2000, p. 271-277

.include librairie
X1 A B 1 Vcc and2
X2 C D 2 Vcc and2
X3 1 2 3 Vcc or2
* interface A in Nt
* interface B in Nt
* interface C in Nt
* interface D in Nt
* interface 1 out S
* interface 2 out S
* interface 3 out S

(a) (b)

