CAD front-end for nanodevice

design
Alexandre B. Guerra and Edval J. P. Santos

Laboratory for Devices and Nanostructures - Departamento de Eletronica e Sistemas,
Universidade Federal de Pernambuco, Caixa Postal 7800, 50711-970, Recife-PE, Brazil

Abstract— Algorithms for modelling quantum ef-
fects, such as the quantized conductance, are being
developed by researchers worldwide. Our research
group has developed a C-program for the simula-
tion of the DC conductance of quantum devices.
In this program, the device geometry has to be
described in matrix format, which makes the data
input process time consuming. To facilitate data
input, we have developed a front-end which con-
verts the design from a standard bitmapped for-
mat into the matrix format. This makes possible
to use standard drawing software to design the de-
vice geometry, and use our program to transform
the bitmapped file into the matrix the conductance
simulation program understands.

Keywords—Nanodevice, CAD front-end, Nan-

otechnology

I. INTRODUCTION

It would be too costly and a great waste of time
to develop microelectronic processes and devices
by trial and error. That is why is important to
have mature simulation tools to predict the behav-
ior of a device or circuit prior to fabrication. Using
a process simulation tool, one can evaluate the con-
struction of the physical structure of the device as
a sequence of process steps, such as: photolithog-
raphy, thin film deposition, etching, etc. Then is
necessary to check on the device electrical perfor-
mance. To this end, one may use a program for
device simulation. If the device does not perform
as desired, one can adjust its dimensions, doping
levels, materials properties, etc. until the desired
device performance is reached. Simulation tools
can also be used to test novel device concepts.

The electrons that take part of the current flow,
i.e., electrons on the conduction band, have ener-
gies near the Fermi level. As the critical dimensions
of the microelectronic devices get closer and closer
to the size of the Fermi wavelength, the electron
present a wavelike behavior and its energy is quan-
tized. The Fermi wavelength,)¢, is related to the
Fermi Energy through the de Broglie’s relation in
Equation 1.

Af= 1
f mE;)

where h is Planck’s constant, m is the electron ef-
fective mass and FEy is the Fermi energy level.
Depending whether the device has one, two or
three dimensions of the order of the Fermi wave-
length, the device is classified as 2— D, 1 — D and
0 — D. A nanowire is a one-dimensional device and
its electrical conductance displays a quantized be-
havior. This class of devices require a full quan-
tum description for the simulation of its behavior,

unlike traditional devices which can be simulated
under the semi-classical approach. For quantum
devices, as a first approximation, one can use the
single electron approach, i.e., neglect many body
effects, and solve Schrédinger equation to calculate
the electrical properties.

From the solution of the wave equation, one
can calculate the quantum transmission probabil-
ity T(E) and then apply the Landauer (1,2) relation
given by Equation 2.

G =9:Gq > |T(E)| (2)

where G is the quantum conductance and g;=2 is
the spin degeneracy.

As the voltage applied at the terminals of the
nanowire is increased, more open channels become
available, increasing the conductance. In a quan-
tum device, the channels are discrete energy levels,
so a step-like behavior is expected, which has been
confirmed experimentally.

In Figure 1, a few quantum devices are pre-
sented. In the figure one can see a quantum
wire, an electronic Mach-Zender interferometer, an
Aharonov-Bohm ring and a quantum constriction.

e,
ety

(d)

Fig. 1. Sample devices: (a) quantum wire; (b) Mach-
Zender interferometer; (¢) Aharonov-Bohm ring; (d) quan-
tum constriction.

For traditional microelectronic devices, there
are many simulation tools available commercially.

These codes cannot simulate quantum devices cor-
rectly, as in such codes it is assumed that during
collision events, the electrons behave very much
like billiard balls (3,4). Hence new simulation tools
are required. Algorithms for modelling quantum
effects, such as the quantized conductance, are be-
ing proposed by researchers worldwide (5,6,7,8,9).
Our research group has developed a C-program for
the simulation of the DC conductance of quantum
devices (9).

Our simulation program solves the wave equa-
tion by calculating the associated Green function.
The device is divided in slices as shown in Figure 2.
Each slice is stored as a column of the device ma-
trix, where each matrix entry is related to the po-
tential energy confining the electron. Each column
(slice) of the device matrix is used to construct
the Hamiltonian matrix for numerical calculation
by using the tight-biding Hamiltonian Model. The
nyp slice matrix is shown in Equation 3, V;..V), in
the diagonal is one slice of the device and one col-
umn of the device matrix. This makes the data
input process time consuming. To facilitate data
input, we have developed a front-end that converts
the design from a standard bitmapped format into
the matrix format that the program understands.

Reservoir

Fig. 2.

Quantum device divided in slices for the simula-
tion of quantum transport. The device is connected to two
reservoirs.

Vi—4t -t 0 0

—t Va—d4t -t .. 0

0 —t Va—4t .. 0

H, =))
0 0 0 Var — 4t

®3)
where V; in the diagonal is the local potential en-
ergy profile at a given slice, and ¢t is a coupling
term.

II. THE FRONT-END

Our idea is to use a drawing program or struc-
tured design program with bitmapped format ex-
port facility. One such example, is the publicly
available Gimp (10) under Linux.

As was mentioned in the introduction the de-
vice matrix is actually the potential energy which
confines the electron inside the nanodevice under
study. An infinite potential means that the elec-
tron has zero probability of being found in that re-
gion. For the sake of this paper, we assume that the
confining potential may only have two values, V =1
and V = 0. This is represented in the bitmapped
file as two colors, black and white. The designer

BITMAPFILEHEADER bmfh;(Bitmap-file header)
BITMAPINFOHEADER bmih;(Bitmap-information header)
RGBQUAD aColors[];(Bitmap color table)
BYTE aBitmapBits[]; (Array of bytes)

Fig. 3. Description of the bitmapped file header.

draws the structure at a graphical application and
the front-end returns the matrix that is used by
the computation algorithm (9). The bitmapped file
format is selected because there is a direct relation-
ship between the pixel and the data stored in the
file. The bitmap file structure (11) is shown in Fig-
ure 3.

The bitmap-file header, BITMAPFILEHEADER,
contains information about the type, size, and
layout of a device-independent bitmap file. The
bitmap-information header, defined as a BITMAP-
INFOHEADER structure, specifies the dimen-
sions, compression type, and color format for the
bitmap. The color table, defined as an array of RG-
BQUAD structures, contains as many elements as
there are colors in the bitmap.The bitmap bits, im-
mediately following the color table, consist of an ar-
ray of BYTE values representing consecutive rows,
or scan lines, of the bitmap. Each scan line consists
of consecutive bytes representing the pixels in the
scan line, in left-to-right order. The scan lines in
the bitmap are stored from bottom up. This means
that the first byte in the array represents the pix-
els in the lower-left corner of the bitmap and the
last byte represents the pixels in the upper-right
corner.

In the monochromatic bitmapped file format, the
color table contains only two entries. Each bit in
the bitmap array, the BYTE structure, represents
a pixel. If the bit is clear, the pixel is displayed
with the color of the first entry in the color table.
If the bit is set, the pixel has the color of the second
entry in the table.

The front-end algorithm begins by discarding the
first 18 bytes of the file and reading the next four.
These bytes are added into a single variable in or-
der to obtain the image width. The process is re-
peated in the next four bytes in order to obtain the
image height. With the image width, the algorithm
computes the length of the image scan lines. The
bitmap scan lines are stored in the disk as multi-
ple of 4 bytes. So the algorithm rounds the image
width divided by 32 (number of bits of 4 bytes) to
the nearest multiple of 4 bytes forward plus infin-
ity. With the length of the scan lines the algorithm
goes to the 62nd byte of the file and begins to read
the image data. To address each bit individually
a byte mask is implemented. The bit information
is stored in an auxiliary matrix. Then the auxil-
iary matrix is mapped into the final matrix. The
final matrix discards the elements of the scan lines
greater than the width of the image, to compensate
the possible extra bits added at the image stored
in the file bitmap format. The algorithm steps are
summarized below.

Read the image width and height
Compute the scan line length
Read the image data

Build the auxiliary matrix

Build the final matrix

Call the computation algorithm

SUhwhH

Fig. 4. An Aharonov-Bohm ring bitmap figure used as an
input to the Front-end program .

1111111141114944134419433443443344394194434443443944344394334439411441441911114111111

1111141444411111143444444411313133144 111111111111111111111111111111111
1111111144411111143444441111111 1111111111111111111111111111
11111144444114131113134144414 1111111111111111111111111
11111111111111111111111111 11111111111111111111111

1111111111111111111111111000000000011111111111111111100000000001111111111111111111111
1111111111111111111111110000001111111111111111111111111111000000111111111111111111111
111141111111114114111111100001111111111111111414111111111111111000011111111111111111111
0000000000000000000000000111111111111111111111111111111111111110000000000000000000000
0000000000000000000000000111111111111111111111111111111111111110000000000000000000000
000000000000000000000000011111111111111444441111344444441111114

000000000000000000000000011111111111111444441111344444441111114

11111411141414411411141100004114111411441141144114114411111111000011111111111441111114
11114444444111114414411100000011111111111114441414111111111000000111111111411111114441

11111414444111111111411110000000000111111111111141111 1111111111111111111111
11111111114111111111111111 11111111111111111111111
1111111111111111111111111111 1111111111111111111111111
1111111111411111111111111111111 1111111111111111111111111111

1111111111411111111111111111111111110000000000000000111111111111111111111111111111111
11111111144111114132224411113131244411113113442441111313121441111111311114411111111111

Fig. 5. The Aharonov-Bohm ring after being processed by
the developed front-end.

As an example, consider the Aharonov-Bohm
ring in Figure 4, as the image input. After running
the front-end program, we have the final matrix
shown in Figure 5.

ITI. CONCLUSIONS

With our front-end program the time consuming
process of building the Hamiltonian matrixes was
eliminated and this made computation more user
friendly.

ACKNOWLEDGEMENTS

The authors would like to thank the Instituto do
Milénio program of CNPq, Brazilian agency. One of
the authors (ABG) would like to thank the schol-
arship funded by CAPES, Brazilian Agency.

REFERENCES

[1] Rolf Landauer, IBM J. Res. Develop., 1, 223 (1957);
Phil. Mag., 21, 863 (1970).

[2] H. Baranger and A. Douglas Stone, Phys. Rev. B, 40,
8169 (1989).

[3] David K. Ferry and Robert O. Grondin, Physics of
submicron devices, Plenum Press, New York (1991)

[4] Richard L. Liboff, Kinetic theory: classical, quantum,

and relativistic descriptions, p. 130, Prentice-Hall Ad-

vanced Reference Series, New Jersey (1990).

Felix A. Buot, Physics Reports, 234, 73-174 (1993).

| T. Ando, Phys. Rev. B, 44, 8017-8027 (1991).

] K. Nikoli¢ and A. MacKinnon, Phys. Rev. B, 50,

11008-11017 (1994).

A. MacKinnon, Z. Phys. B, 59, 385 (1985).

| Edval J. P. Santos, Simulation of the dc conductance of

ballistic quantum devices, to appear in the Proceedings
of the XVII SBMicro (2002)

[10] http://www.gimp.org

[11] James Murray, Encyclopedia of Graphics File For-
mats, 572-591 (1994)

Noot

e

