
1

Comparative Study Between Synthesis Tools for Digital Systems

Ohira M. I., Zanella, F. P., Luca H.P., Silva A.C.R.

ikeguchi@dee.feis.unesp.br, zanella@dee.feis.unesp.br, helder@dee.feis.unesp.br, acrsilva@dee.feis.unesp.br

Universidade Estadual Paulista Júlio de Mesquita Filho
Faculdade de Engenharia de Ilha Solteira

Departamento de Engenharia Elétrica
Av Brasil 56 , 15385-000 Ilha Solteira, - SP - Brasil

This paper presents the evaluation of performance of the
project tools called Tabela and Tab2VHDL, developed for
synthesis of machines of finite states synchronous. The
synthesis tools used for evaluation were Leonardo Spectrum,
by Exemplar Logic Inc, environment Max+plus II, by Altera
and the own software Tabela and Tab2VHDL developed in
language C.

From the state diagram describing the operation of the
machine, the program Tabela obtains all the functions of
element control of memories and all the output functions. It
can be chosen as element of memory the flip-flops type D and
JK. The created combinational functions are in their minimum
form, whose minimization algorithm used is Quine-
McCluskey.

The program Tab2VHDL create from the file generated
by the program Tabela, a RTL model (Registers of Transfer
Logic) in description language VHDL (Very high speed
integration Hardware Description Language).

The software Leoonardo Spectrum besides a logical
synthesizer, is an analysis tool and a developed optimizator
FPGA (Field Programmable Gate Array) , a cPLD
(complexing Programmable Logic Device), a ASIC
(Application Specific Integrated Circuit), etc. It was used
different techniques of state allocation (Simplest, One-Hot e
Almost-One-Hot), whose codes were implemented in the
description language AHDL (Altera Hardware Description
Language).

It was chosen for study of synthesis tool the codes AMI
(Alternated Mark Inversion), HDB1 (High-Density Bipolar
First-Order Coding) and HDB3 (High-Density Bipolar Third-
Order Coding) due to their importance in transmission of data
in base band through a pair of wire (phone pair), that is the
simplest, the most practical and the most economical way of
data communication in urban perimeters or distances of some
kilometers. Nowadays the analogical voice channels of the
phone system, whose maximum capacity is about 28,8Kbit/s,
they have been substituted by digital channels of highspeed of
IDN (Integrated Digital Net), which allow multiple rates from
64Kbit/s to 2,048Mbit/s. These changes are creating the
necessity of equipments which allow the access to these
digital channels through the subscriber line, known as digital
modems or band base, also called CSU/DSU (Channel Service
Unit / Data Service Unit). The unit called CSU accomplishes
the connection from terminal equipment of data (TED) to the
subscriber line of the digital net. The CSU should be able to

accomplish the conditioning of the line as well as the filtering
and equalization of the signs. It also should be able to detect
long sequences of zeros to guarantee the timing information,
and to correct bipolar violations [1].

The codes were all simulated in the environment
Max+puls II and for that input files were used, for the same
circuit, with different treatments, in other words, using
different tools for the code synthesis and different state
allocations. Those input files were: the circuit in language
VHDL generated by program Tab2VHDL, the same circuit,
however, optimized by the software Leonardo Spectrum and
the circuit in language AHDL (in which the state allocations
were tested).

Although these input files describe the same circuit, they
have differences each other and in the simulation these
differences are described in a control file called report file,
were it’s described the logical functions cost (defined as the
number of input ports of the logical gates in their primitive
format), the number of used cells (for animplementation in
FPGA), quantity of memory and synthesis time. Such files
were used to make the comparison among the implementation
and the output file of the program Tabela was also used to
compare logical costs.

All the codes were implemented in the programmable
component MAX7000E, Device: EPM 7128ELC84-7 and the
simulations prove their perfect operation.

The simulations are regarding each code are shown in the
Figure 1.

Figure 1 – Simulation of the codes for a certain input.

The Figure 2 shows the block diagram of the project to be
accomplished, since the input (state diagram) until the final
result, that is a simulable and synthesizable digital circuit.

2

Figure 2 - Block diagram of the program TABELA and next steps.

Initially generate a states diagram of a certain state
machine. To exemplify the process of Figure 2, had used the
HDB1 code, whose states diagram is shown in the Figure 3.

Figure 3 – States Diagram of HDB1 code.

Starting from the states diagram, make the states
declaration in format demanded by the program Tabela, that
should follow this order: flip-flops number, type of each flip-
flops (D or JK), number of inputs, number of outputs and
transitions of states (current state, next state, input and output,
in this order) and all the declarations in decimal
representation.

The Figure 4 shows the use of the program Tabela in the
description of the state diagram shown in the Figure 3.

2 <- No of Flip-Flops
D <- Type of Flip-Flops
D <- Type of Flip-Flops
2 2 <- No of inputs and outputs respectively
0 1 1 1 <- Current State/ Next State/ Input/ Output
0 1 3 1
0 0 2 0

0 2 0 1
1 1 2 0
1 0 1 3
1 0 3 3
1 3 0 3
2 1 0 1
2 1 2 1
3 0 0 3
3 0 2 3
-100 <- end file.

Figure 4 – States Diagram of HDB1 code, in program TABELA.

After the file compilation in the program Tabela, this
generates an output file, as shown in the Figure 5.

!DE!P/!ENTRADA !MINT!!Q1!Q1+!D1!!Q0!Q0+!D0!!Z1!Z0!
! 3 ! 0! 2 (10) ! 11 !! 1! 0! 0!! 1! 0! 0!! 1! 1!
! 3 ! 0! 0 (00) ! 3 !! 1! 0! 0!! 1! 0! 0!! 1! 1!
! 2 ! 1! 2 (10) ! 10 !! 1! 0! 0!! 0! 1! 1!! 0! 1!
! 2 ! 1! 0 (00) ! 2 !! 1! 0! 0!! 0! 1! 1!! 0! 1!
! 1 ! 3! 0 (00) ! 1 !! 0! 1! 1!! 1! 1! 1!! 1! 1!
! 1 ! 0! 3 (11) ! 13 !! 0! 0! 0!! 1! 0! 0!! 1! 1!
! 1 ! 0! 1 (01) ! 5 !! 0! 0! 0!! 1! 0! 0!! 1! 1!
! 1 ! 1! 2 (10) ! 9 !! 0! 0! 0!! 1! 1! 1!! 0! 0!
! 0 ! 2! 0 (00) ! 0 !! 0! 1! 1!! 0! 0! 0!! 0! 1!
! 0 ! 0! 2 (10) ! 8 !! 0! 0! 0!! 0! 0! 0!! 0! 0!
! 0 ! 1! 3 (11) ! 12 !! 0! 0! 0!! 0! 1! 1!! 0! 1!
! 0 ! 1! 1 (01) ! 4 !! 0! 0! 0!! 0! 1! 1!! 0! 1!

FUNCAO D1

MINTERMOS : 0; 1;

IMPLICANTES PRIMOS ESSENCIAIS :

ESSENCIAL: 0 REDUNDANCIA: 1 -> 000X

CUSTO FINAL DE D1 = 3

FUNCAO D0

MINTERMOS : 4; 12; 9; 1; 2; 10;

IMPLICANTES PRIMOS ESSENCIAIS :

ESSENCIAL: 2 REDUNDANCIA: 12 -> XX10
ESSENCIAL: 1 REDUNDANCIA: 8 -> X001
ESSENCIAL: 4 REDUNDANCIA: 10 -> X1X0

CUSTO FINAL DE D0 = 10

FUNCAO Z1

MINTERMOS : 5; 13; 1; 3; 11;

IMPLICANTES PRIMOS ESSENCIAIS :

ESSENCIAL: 3 REDUNDANCIA: 12 -> XX11
ESSENCIAL: 1 REDUNDANCIA: 6 -> 0XX1
ESSENCIAL: 5 REDUNDANCIA: 10 -> X1X1

CUSTO FINAL DE Z1 = 9

FUNCAO Z0

MINTERMOS : 4; 12; 0; 5; 13; 1; 2; 10; 3; 11;

IMPLICANTES PRIMOS ESSENCIAIS :

ESSENCIAL: 2 REDUNDANCIA: 13 -> XX1X
ESSENCIAL: 0 REDUNDANCIA: 7 -> 0XXX
ESSENCIAL: 4 REDUNDANCIA: 11 -> X1XX

CUSTO FINAL DE Z0 = 6

CUSTO TOTAL DAS 4 FUNCOES = 28

Figure 5 – Program TABELA output file.

The software Tab2VHDL generates the VHDL code
directly from the output file of program Tabela (Figure 5).

3

The Figure 6 shows the VHDL model of the line code
projected, generated by the TAB2VHDL program from the
program Tabela output file.

-- Inferindo flip-flop tipo D
PROCESS(CLK, CLR)
BEGIN
 IF CLR = '0' THEN
 VE0 <= '0';
 ELSIF CLK'EVENT and CLK = '1' THEN
 VE0 <= D0;
 END IF;
 Q0 <= VE0;
END PROCESS;

-- Inferindo flip-flop tipo D
PROCESS(CLK, CLR)
BEGIN
 IF CLR = '0' THEN
 VE1 <= '0';
 ELSIF CLK'EVENT and CLK = '1' THEN
 VE1 <= D1;
 END IF;
 Q1 <= VE1;
END PROCESS;

 -- Processos que implementam as funcoes combinacionais de
controle
 -- dos Elementos de memoria e de Saidas.

 D1 <= (NOT(X1) AND NOT(X0) AND NOT(VE1));
 D0 <= ((VE1) AND NOT(VE0)) OR (NOT(X0) AND NOT(VE1)

AND (VE0)) OR ((X0) AND NOT(VE0));
 Z1 <= ((VE1) AND (VE0)) OR (NOT(X1) AND (VE0)) OR ((X0)

AND (VE0));
 Z0 <= ((VE1)) OR (NOT(X1)) OR ((X0));

END RTL;

Figure 6 – HDB1 in VHDL language.

From the circuit description in VHDL language, has made
the compilation of the file in the software MAX+plus II,
whose were obtained the datas costs by the report file. The
most interest datas are shown in the Figure 7.

** DEVICE SUMMARY **
Device EPM7128ELC84-7

Chip/ Input Output Bidir Shareable
POF Pins Pins Pins LCs Expanders % Utilized

hdb1_s2 4 4 0 4 0 3 %

User Pins: 4 4 0

** EQUATIONS **

CLK : INPUT;
CLR : INPUT;
X0 : INPUT;
X1 : INPUT;

-- Node name is 'Q0' = 'VE0'
-- Equation name is 'Q0', location is LC115, type is output.
 Q0 = TFFE(!_EQ001, GLOBAL(CLK), GLOBAL(CLR),

VCC, VCC);
 _EQ001 = !Q1 & !X0;

-- Node name is 'Q1' = 'VE1'
-- Equation name is 'Q1', location is LC117, type is output.

 Q1 = DFFE(_EQ002 $ GND, GLOBAL(CLK), GLOBAL(
CLR), VCC, VCC);

 _EQ002 = !Q1 & !X0 & !X1;

-- Node name is 'Z0'
-- Equation name is 'Z0', location is LC120, type is output.
 Z0 = LCELL(_EQ003 $ VCC);
 _EQ003 = !Q1 & !X0 & X1;

-- Node name is 'Z1'
-- Equation name is 'Z1', location is LC118, type is output.
 Z1 = LCELL(_EQ004 $ Q0);
 _EQ004 = Q0 & !Q1 & !X0 & X1;

Compilation Times

 Compiler Netlist Extractor 00:00:02
 Database Builder 00:00:00
 Logic Synthesizer 00:00:00
 Partitioner 00:00:01
 Fitter 00:00:01
 Timing SNF Extractor 00:00:00
 Assembler 00:00:00
 -------------------------- --------
 Total Time 00:00:04

Memory Allocated

Peak memory allocated during compilation = 5,325K

Figure 7 – Report File from MAX+plus II software.

The costs were obtained by the report files through the
boolean equations.

For the results obtained from the program Tabela, the
costs are shown in the table 1.

TABLE 1 – Total costs obtained, for each code, by the
program Tabela.

Code Total Cost
AMI 09

HDB1 28
HDB3 88

From the report file created by the software Max+puls II
and from the allocations, the total costs for each code were
obtained. The results are presented in table 2:

TABLE 2 – Costs obtained for each code, being varied the
allocation type.

Code Assign Logic
Cost

Used
Cell

Used
Memory

Compilation
Time

Simplest 012 03 3,622 K 00:00:07
AMI One-Hot 012 04 3,670 K 00:00:03

Almost
One-Hot

012 03 3,499 K 00:00:04

Simplest 028 04 3,688 K 00:00:04
HDB1 One-Hot 057 06 3,786 K 00:00:04

Almost
One_hot

058 06 6,197 K 00:00:02

Simplest 340 14 3,687 K 00:00:09
HDB3 One-Hot 268 34 5,598 K 00:00:10

Almost
One-Hot

159 34 3,888 K 00:00:06

4

From the VHDL model, created by Leonardo Spectrum
and implemented by the software Max+plus II, was obtained
the total costs, shown in the table 3:

 TABLE 3 – Total costs obtained, for each code, by Leonardo
Spectrum.

Code Logic
Cost

Used
Cell

Used
Memory

Compilation
Time

AMI 08 3 3,509 K 00:00:04
HDB1 12 4 3,487 K 00:00:13
HDB3 65 7 3,646 K 00:00:15

From the model VHDL, created by program Tab2VHDL
and implemented by the software Max+plus II, is obtained the
total costs, shown in the table 4.

TABLE 4 – Total costs obtained, for each code, by the
program Tab2VHDL.

Code Logic
Cost

Used
Cell

Used
Memory

Compilation
Time

AMI 08 3 3,492 K 00:00:08
HDB1 12 4 5,325 K 00:00:04
HDB3 65 7 5,325 K 00:00:05

Conclusion
When analyzing the presented results it can be concluded

that the tool Tab2VHDL has a great performance in relation to
the costs for implementation time. However the software
Leonardo Spectrum presented the great advantage of reducing
the quantity of used memory, what is a very important for the
circuit of large complexibility. However the program
Leonardo Spectrum is a commercial software which is always
in development and updating. On the other hand, the programs
Tabela and Tab2VHDL are programs originating from
scientific productions in which there isn’t the main
preoccupation about the continuity in its development. So it’s

possible to conclude that the relation cost – benefit among the
analyzed tools is better for the programs Tabela and
Tab2VHDL , because they don’t incur in high costs end they
present results that are very similar to the commercial
programs.

In relation to the methods of state allocations, it’s possible
to notice that their effect is not very significant in cases in
which tools that optimize the circuit are used, however, when
there isn’t availability of any tool of this level, as the ones
presented in this paper, the change of state allocation becomes
very valuable, mainly for circuits with a certain complexity
degree.

References
[1] A. M. Parisoto, et all, Implementação em EPLDs de

módulos integráveis de um modem banda base, UFRGS –
Porto Alegre, RS – Brasil

[2] I. S. Bonatti, M. C. G. Madureira, Introdução à Análise e
Síntese de Circuitos Lógicos; Editora Unicamp, Campinas,
1990.

[3] “Max + Plus II Getting Started” Version 9.1, Copyright ©
1995 - 2002 Altera Corporation, 101 Innovation Drive, San
Jose, California 95134, USA.

[4] D. J. Comer, “Digital Logic and State Machine Design.” 3th

ed.; New York: Oxford University Press, 1995.
[5] J.F. Wakerly, “Digital Design Principles and Practices”,

State Assignment, Chap. 5, p.387-390, ?
[6] “Flex 8000 - State Machine Encoding”. San Jose, CA:

Altera Corp., ver 1, p.187-189, May 1994.
[7] “Max + Plus II AHDL” Version 6.0, Copyright © 1995 –

November 1995, Altera Corporation, 101 Innovation Drive,
San Jose, California 95134, USA.

[8] Manual Digital do Programa TABELA; version 2.7; July
1991

[9] www.altera.com
[10] www.exemplar.com
[11]www.ieee.org/pubs/authors.html

