A NEW LEARNING APPROACH TO DESIGN FAULT TOLERANT ANN:
FINALLY A ZERO HW-SW OVERHEAD

Djones Lettnin], Fabian Vargasz, Diogo Brums, Ddrcio Prestes®

Catholic University — PUCRS
Electrical Engineering Dept.
Av. Ipiranga, 6681. 90619-900 Porto Alegre, Brazil
diones@ee.pucrs.br, *vargas@computer.org,’diogo@ee.pucrs.br , *darcio@ee.pucrs.br

Abstract

We present a new approach” to design fault tolerant artificial
neural networks (ANNs). Additionally, this approach allows estimating
the final network reliability. This approach is based on the Mutation
Analysis technique and it is used during the training process of the
ANN. The basic idea is to train the ANN in the presence of faults
(single-fault model is assumed). To do so, a set of faults is injected into
the code describing the ANN. This procedure yields mutation versions
of the original ANN code, which in turn are used to train the network
in an iterative process with the designer until the moment when the
ANN is no more sensible to the single faults injected. In other words,
the network became tolerant to the considered set of faults. A practical
example illustrates the proposed methodology, where an ANN is used
to classify electrocardiogram (ECG).

Keywords: Artificial Neural Networks, Mutation Analysis;
Fault-Tolerant Computing Systems,; Electrocardiogram Classification.

1. Introduction

The use of ANNSs in critical applications implies adoption of
specific techniques to ensure system’s reliability. In this paper, we
present a new learning approach used to train the ANN in the presence
of faults. The ultimate goal of this approach is to render the ANN
tolerant to the set of faults for which it was trained.

When compared to other techniques found in the literature
used to implement fault tolerant ANNs [1], the proposed approach does
not implies in system’s performance degradation for the case the ANN
is implemented in the form of software, or even area overhead, if the
ANN is mapped into hardware (i.e., an ASIC or FPGA). The primary
reason for such an attractive advantage is the fact the proposed
approach affects only the learning process of the ANN, thus, only the
values of the weights associated with the neuron inputs are modified.
The whole ANN architecture is maintained as in the original form, in
terms of interconnections and internal blocks. According to our
knowledge, it is also worth to mention that, so far, commercially
available HW-implemented ANNs [2,3] do not have been designed by
integrating fault tolerance techniques into their architecture [4,5]. This
situation is economically very interesting because commercial chips
can become fault tolerant by using the proposed approach without any
HW design modification. This means that from the user’s point of
view, system is unchanged, and only the training procedure is modified
to attend the requested fault-tolerant criteria.

2. Correlating the Mutation Analysis Technique
and the Proposed Approach

In the following, we propose an adaptation of the mutation
analysis approach, originally proposed for software testing in 1978 by
DeMillo et al. [6,7]. At that time, Mutation Analysis was proposed as a
method for evaluating the adequacy of a set of test vectors for a
program. Informally, test vectors are considered mutation-adequate for
a program if they can distinguish the program from programs that
differ from it by small syntactic changes [6]. Although mutation
analysis is the basis for a test vectors selection criterion, in our work
we are concerned with its use as a criterion for fault-tolerance

* This work is partially supported by CNPq and FAPERGS.

insertion/reliability estimation by means of training/simulating the
ANN in the presence of faults.

If the obtained reliability level attends the specification, then
ANN can be compiled for the target processor (or synthesized, if it is to
be implemented in hardware). At this moment, it is said that the ANN is
tolerant to the assumed set of faults

For this purpose, a set of mutation operators dedicated to C++
has been developed and considered as a functional fault model (see
Table 1).

Type Description

AOR Arithmetic Operator ROR Relational Operator

Replacement Replacement
ABS | Absolute Value Insertion | VCR Variable for Constant
Replacement

CR Constant Replacement VR Variable Replacement

CVR Constant for Variable 8]0]]
Replacement

Unary Operator Insertion

LOR Logical Operator BOR
Replacement

Bit Operator Replacement

Table 1. Mutation operators set for C++ functional descriptions.

To inject a fault, a mutation operator should be applied on the
original C++ description. Fig. 1 gives an example of eight mutants for
routine neuronbad. This routine describes the behavior of the neuron
used in the ANN case study. Note that each of the eight mutant
statements is executed one at a time during the fault simulation
process. Additionally, it is worth to mention that Mutants 1 to 5: AOR,
VCR, VR, ABS and ROR were used to train the case study during the
learning process in the presence of faults (i.e., during the fault
simulation process).

float neuronbad::SumFunction(float *input) { //Neuron Core:: Summation
Function

float output_SF = 0.0;

for (int i=0; i< w_size; i++)
output_SF += weight[i]*input[i];
Aoutput_SF = weight[i]*input[i]; // AOR: Mutant 1
Aoutput_SF += 1*input[il]; /I VCR: Mutant 2
Aoutput_SF += weight[i]*input[w_size]; // VR: Mutant 3

}

return output_SF;

void neuronbad::ActFunction(float output_SF) { // Activation Function
float u;
u = -TWO*B*output_SF;
Au = -TWO*B*fabs(output_SF); /I ABS: Mutant 4
if (u>UMAX) u = UMAX;
Aif (u>UMAX) u = output_SF; Il CVR
Aif (u<UMAX) u = UMAX; /I ROR: Mutant 5
Aif (uUSUMAX) u = B; I CR

output = (TWO*A/(1+exp(u))-A);
Aoutput = (TWO*A/(1+exp(++u))-A); // UOI

}

Fig. 1. Example of fault injection in a neuron described in the C++
language. (The symbol A identifies mutated statements.)

3. The Proposed Methodology

The development of an artificial neural network is basically
divided into three steps: a) Architecture Specification; b) Definition of
the Learning Paradigm c) Selection of the test patterns and validation.

The proposed approach is applied to the second and third steps of the
ANN design flow. More precisely, it is applied to the supervised
learning process, as seen in Fig. 2. With this goal in mind, we have
proposed the following methodology:

START

CODE ’ Vectors Set
No @
Yes | ,
Pa
H Train*

Neuron 1

Mutation
Rules
Set

Train*
Neuron n

Apply the final weights obtained

from Neuron n to the Original
Code and verify if the reliability
level (use Equation Il).

End process,
FT ANN obtained

*: Before moving to train the subsequent mutant, ensure that the current mutant
has been trained for all the network neurons.

Fig. 2. Proposed Methodology: Fault-Tolerant ANN Design Flow.

a) Initially, we execute the original program in order to train the
network with respect to a given Input Vectors Set. In this step,
identically to any other conventional procedure, a given number
of epochs is used to train the ANN. At the end of this process,
save the final weights of all neurons of the network to be used in
the next step of the methodology.

b) Next, we inject faults into the original code by generating
mutated versions of it. These mutated versions are based on the
Mutation Rules Set, and are one by one, trained with respect to
the same set of Input Vectors Set. In this procedure, all neurons of
the network are trained, one by one as follows (consider initially
the neuron input weights determined in step (a)):

(i) Inject mutant 1 into neuron 1 and start the training
procedure for the whole network. When the network
is trained, take off mutant 1 from neuron 1, move it to
neuron 2 and inject the same mutant 1 into it.
Execute the network training procedure with this
fault injected into neuron 2. Follow this procedure
until all the network neurons have been trained for
mutant 1.

(ii) Choose another mutant (say mutant 2) from the
Mutation Rules Set and repeat step (i). Stay in this
training loop for the network until all the mutants

from the Mutation Rules Set have been applied to all
the neurons of the network.

c) Just after leaving step (b), there is a checkpoint used to verify the
obtained reliability level for the network, with respect to the
Mutation Rules Set considered. The reliability verification
process is performed as follows: take the final set of neuron input
weights determined for the network after training all the neurons
for all the mutants and apply these weights into the original code.
Then, take the same subset of mutants used to train the network
in step (b), and add new mutants to this subset from the Mutation
Rules Set. Based on this larger set of mutants, generate mutated
versions of the original code, simulate one by one, check the
outputs, and based on an expected behavior, decide if the
obtained reliability level was attained or not for the network. If
yes, then the process is finished and the network is compiled for
the target processor (or synthesized, if it is to be implemented in
hardware). Otherwise, it is necessary to move backwards and
train again the network with respect to all the mutants, as
described in step (b) items (i) and (ii). Note that in this case, the
initial neuron input weights are not the initial values obtained
from step (a), but those obtained from the end of step (b), item
(ii). This new training process is based on two additional actions:

- Add complementary mutation rules to the “Mutation
Rules Set” in order to increase the types of faults that will be
injected into the ANN;
- Add complementary vectors to the “Input Vectors Set”
in order to increase the size of epochs used to train the ANN.
This design loop between steps (¢) and (b) is repeated until a
given runtime or an iterations number is not exceeded.

4. Experimental Results

This section presents a computation example that we have
developed to illustrate the proposed approach. With this purpose, we
implemented and trained an ANN to recognize electrocardiogram
(ECG). By doing so, the primary goal of this section is to verify the
ANN effectiveness to recognize two of the most important cardiac
dysfunctions that can be detected by means of an EGC record:
Ventricular Flutter (VF), and Premature Ventricular Contraction
(PVC), even if the ANN is suffering from single faults.

ECG is a bio-signal, which is due to the electrical activity of
the human heart that is transmitted to the body surface. It can be
recorded using various systems. The simplest one is the orthogonal 3-
lead system that records three subcomponent signals which are called
lead X, Y, and Z, respectively [8]. Each ECG lead is composed of a
number of cardiac cycles. The electrocardiography patterns that
constitute a cardiac cycle and must be recognized are the QRS
complex, the inter-wave segments P and T, and the cardiac intervals
[8].

One of the ANN architectures we implemented in this work is
a Multi-Layer Perceptron (MLP), with one hidden layer (fifteen
neurons) and one output layer (one neuron). The algorithm used to
train the ANN was the Back-Propagation with the Hyperbolic Tangent
Activation Function. After specifying and training the ANN, but before
applying the proposed technique, the ANN provided us with a
recognition success of 92% at the output (left-hand column, fig. 3). For
the fault tolerant (FT) version of this network, i.e., after training it
according the proposed approach, it was obtained the score of 91%
(right-hand column, fig. 3). Both recognition scores shown in fig. 3
were obtained for a fault-free operation, i.e., the network was not
operating in the presence of faults when these scores were obtained.
Therefore, the most important conclusion we can take from the data
depicted in fig. 3 is that the proposed approach does result in a
negligible degradation of the network recognition capability when
compared to the conventional technique used for training the network.

In order to obtain the score of 92%, we have trained the ANN
for 800 epochs, where one epoch is equal to 1218 input vectors, as seen
in fig. 2 .

Fault-Free Operation

Fig. 3.Recognition success for the 16-neuron network before
(92%) and after (91%) using the proposed approach. Results
for a fault-free operation.

It was used 5 mutants from the Partial Mutation Rules Set:
AOR, VCR, VR, ABS, ROR, (fig. 1, Mutants / to 5, respectively) to
train the ANN in the presence of single faults. During this procedure,
the mutants were injected into each of the 16 neurons of the ANN, one
mutant at a time. For each mutant injected, we executed one epoch, i.e.,
1218 input vectors were applied to the network during the training
process. Then, the computational complexity associated with the whole
training process in terms of the total number of input vectors applied to
the network can be computed as follows: 5 mutants per mutant x 16
neurons X 1218 vectors per mutant/neuron = 97.440.

The Figure 4 illustrates results for two mutants injected into
the ANN code, and the obtained reliability (in terms of recognition
scores) for two different situations: before and affer it was trained
according to the proposed approach. In figs. 4(A1) and 4(B1), there are
two results (columns) for each of the sixteen neurons: the lefi-hand

column indicates the network recognition success for a fault injected in
the respective neuron before training the ANN with the proposed
approach. The right-hand column indicates the same situation, but after
training the ANN with the proposed approach. Note that in all the 16
cases of these figures (except for neuron 4 in fig. 4(B1)) the ANN
presents better recognition scores when it was trained with the
proposed approach.

The two mutants used in fig. 4 are: ABS and “Output Null”
were used as closed test and open test respectively to verify the
reliability. The “Output Null” mutant represents the disconnection of
the neuron from the network.

Figs. 4(A2) and 4(B2) summarize the network average
recognition success for each one of the four faults injected into the
network. For instance, for the ABS mutant, the score of 66% represents
the averaged value of the 16 scores obtained when the ABS mutant was
injected into the 16 network neurons of the original version (Not FT).
This result was obtained before training the network with the proposed
approach. For the FT version of this network, i.e., after training it with
the proposed approach, similar reasoning can be taken for the score of
83% as indicated by the right-hand column in fig. 4(A2).

Additionally, the reader should also note that the left-hand
column in fig. 4(Bl) indicates the respective neuron contribution
importance for the ANN operation. In other words, when it is
disconnected from the network as the consequence of the fault
“Output Null”, it cannot contribute for the recognition process.
Following this thought, neurons 3, 5, 8, 10 and 11 are the most
important for the ANN operation.

ABS Mutant

(A2)

Output Null Mutant

ABS Mutant
100
90
80
70
o 60
g so
b 40
30
20
10
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Neurons
(A1)
Output Null Mutant
100
90
80
70
g 60
g 50
S 40

(BI)

Fig. 4.

(B2)

Recognition success for the network before and after using the proposed approach. Results for single fault injection

in the 16-neuron network, one at a time. (A): closed test; (B): open test.

5. Final Considerations & Future Work

We presented a new approach to design fault tolerant artificial
neural networks (ANNSs). Additionally, this approach allows estimating
the final network reliability. This approach is based on the Mutation
Analysis technique, and it is used during the training process of the
ANN.

The basic idea is to train the ANN in the presence of faults. In
this case, the single fault model is assumed. To do so, a set of faults

(one at a time) is injected into the code describing the ANN. This
procedure yields mutation versions of the original ANN code, which in
turn are used to train the network in an iterative process with the
designer until the moment when the ANN is no more sensible to the
single faults injected. In other words, the network became tolerant to
the considered set of faults.

A practical example where an ANN is used to recognize
electrocardiogram (ECG) was presented to illustrate the proposed

methodology. The architecture used to implement the case study was a
Multi-Layer Perceptron (MLP), in two different topologies:
a) one hidden layer (fifteen neurons) and one output
layer (one neuron);
b) one hidden layer (twenty-five neurons) and one output
layer (one neuron).

In both cases, the algorithm used to train the ANN was the
Back-Propagation with the Hyperbolic Tangent Activation Function.
The results obtained indicate that the proposed approach is a powerful
tool to the ANN with respect to a given set of faults. If the ANN is
implemented in software, these faults may be the result of design
specification mistakes, or compilation errors for instance.
Alternatively, if the ANN is to be implemented in hardware, these
faults can be mapped as single stuck-at faults at the gate level.

For the continuation of this work, other network architectures
will be considered. For instance, instead of using feed-forward ANNs,
we will consider recurrent/feedback ones. Additionally, we will
implement two equivalent ANN versions: one in software to run in a
DSP processor, and one in hardware, by mapping a programmable
logic component (FPGA). The primary goal of this task is to perform
electromagnetic compatibility tests with these software/hardware
components in order to more accurately evaluate the benefits provided
by the proposed approach for the network when it is operating in real
noisy environments such as those affected by strong electromagnetic
interference.

6. References

[1] Demidenko, S.; Piuri, V. On-line Testing In Digital Neural
Networks. 1EEE Proceedings of the Asian Test Symposium
(ATS), 1996.

[2] Heemkerk, J. N. H. Overview of Neural Hardware. Ph.D.
Thesis, Unit of Experimental and Theoretical Psychology -
Leiden University, Chapter 3, 1995.

[3]1 Philips L-Nero Chips 1.0 and 2.3. Laboratories d’Electronic
Philips (LEP). 22, Av. Descates. BP 15, 94453 Himeil-
Brevannes Cedex, France.

[4] Pradhan, D. K. Fault-Tolerant Computer System Design.
Prentice-Hall, 1996. 544p.

[5] Crouch, A. L. Design for Test for Digital IC’s and Embedded
Core Systems. Prentice Hall PTR, Upper Saddle River, NJ
07458, 1999. 349p.

[6] Weiss, S. N.; Fleyshgakker, V. N. Improved Serial Algorithms
for Mutation Analysis. International Symposium on Software
Testing and Analysis - ACM-ISSTA, Cambridge - MA, June
1996, pp. 149-158.

[7]1 Offutt, A. J. Investigations of the Software Testing Coupling
Effect. ACM Transactions on Software Engineering and
Methodology, Vol. 1, No. 1, January 1992, pp.5-20.

[8] Trahanias, P.; Skordalakis, E. Syntactic Pattern Recognition of
the ECG. 1EEE Transactions on Pattern Analysis and Machine,
Vol. 12 No. 7, Jul. 1990, pp.648-657.

