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ABSTRACT

The Montgomery Multiplication is largely used in
cryptosistens, like RSA and ECC, which needs efficient
implementations. This paper presents an implementation
of the Montgomery Multiplication in a coarse-grained
reconfigurable architecture, the X4CP32.

1. INTRODUCTION

Public-key cryptosystems, like RSA and Elliptic
Curves Cryptography (ECC), make massive use of
modular arithmetic, mainly multiplication and
exponentiation. The Montgomery Modular Multiplication
[1], is an efficient and flexible algorithm, that can be used
to support fast cryptosystem implementations.

The Montgomery algorithm computes: A x B x r -1

mod M. The constraints of this algorithm are: A and B
ought be smaller than M and r ought be relatively prime
to M.

2. ALGORITHM USED

The Montgomery algorithm works for any base, so it
is possible to take advantage of the 32 bits word of the
X4CP32 architecture to have a better implementation.
Equations 1 presents the word representation of ‘A’, ‘B’
and ‘M’.

Equations 1 – A, B and M representation

Where: k = number of words, t = size in bits of the
word and β = 2t.

The word-level Montgomery Modular Multiplication
algorithm is presented in Equations 2:

1 Int Montgomery(A,B,M, (-m0)-1){
2 int R = 0;
3 for(int I; I <= k; I++){
4     tmp = (r0 + aI * b0) * (-m0)-1 mod β;
5      R = R + aI * B + tmp * M;
6     R /= β; }
7 return R;  }

Equations 2 – Algorithm

3. TARGET ARCHITECTURE

The X4CP32 [2, 3] is a coarse-grained reconfigurable
architecture that consists of two hierachic levels of
abstraction: RPU and Cell. Each one has its own
mechanisms of progamability and configurability.

The Reconfigurable and Programming Unit (RPU) is
the main entity in the X4CP32 architecture. The RPU is
responsible for seeking instructions in the main memory
and executing them. The Execution Mode defines the
behavior of the RPU. There are two Execution Modes:
the Programming Execution Mode and the
Reconfigurable Execution Mode.

In Programming Execution Mode the RPU acts as a
parallel processor. The top left Cell assumes the
Processor Operation Mode. The other Cells assume the
Dynamic ALU Operation Mode, to execute the
instructions sent from the top left Cell. In the
Reconfigurable Execution Mode the RPU configures each
Cell inputs, operations, outputs and routings, this way
building a systolic data path, just like the usual
reconfigurable architectures.

4. IMPLEMENTATION

For exploiting the processor’s word length, ‘t’ is set to
16, since the product of two 16 bits number is a 32 bits
number. ‘A’, ‘B’ and ‘M’ are represented as a 64
positions array each.

To compute the multiplication of a 1024 bits number
(B and M) by others numbers (aI and tmp), with 16 bits
length, it is necessary to multiply each array (which
represents the 1024 bits numbers) position by the 16 bits
multiplicand, preserving the 16 lower bits and sum the 16
higher others (carry in) to the next position.

Those calculi don’t overflow the word capacity. The
maximum product of two 16 bits numbers is
0xFFFE0001, with the maximum carry of 0xFFFE and a
maximum result of 0xFFFEFFFF.

When the procesing of aI*B and tmp*M is finished,
it’s still necessary to perform the sum of three 1024 bits
numbers (line 7 in Equations 2). The division of R by β
(line 8) is done by shifting the array one position down,
when saving it to the memory.

The gray boxes indicate that the RPU is in
Programming Execution Mode. White boxes are RPU’s
in Reconfigurable Execution Mode. Each circle in the



Figure 1
RPU indicates a Cell, and the symbol within the circle is
the operation executed by the Cells. When operations are
performed in RPU’s in Programming Execution Mode
the symbol within the circles represent the main (but not
the only) operation of that Cell. When no operation is
indicated in any cell of the RPU, it performs I/O
operation only.

The RPU ‘1’ calculates line 6 of Equations 2 first, in
a common processor fashion. The systolic way would
consume many Cells and the performance doesn’t make
for it. This computation consumes 51 clock cycles.

RPU ‘1’ just sends a I and B[x] as inputs of RPU’s ‘3’.
The same goes to RPU ‘2’, which sends tmp and M[x] to
RPU ‘4’. The output RPU ‘7’, only sends a position of R
to be added and receives a new R position to be stored in.

Reconfigurable Execution Mode RPU’s (3 to 6 and 8)
implement the carrying operation. These RPU’s sum the
result sent by a Programming Execution Mode RPU with
the shifted right high part of the previous result. To the
result of this sum, an and operation with 0000FFFF is
applied to save the 16 lower bits. To the same sum result
a 16 positions left shift (8 in each shift Cell) is applied to
implement the ‘carry in’ to be added to the next result
sent by the Programming Execution Mode RPU.

5. RESULTS AND COMPARISON WITH OTHERS
IMPLEMENTATIONS

An ASIC systolic design, synthesized in FPGA,
presented in [4] was chosen for comparison. It presents a
bit-wise version of the algorithm. Another chosen
architecture is an ASIC presented in [5]. A general-
purpose processor (GPP) C implementation was
developed using the same word level algorithm and ran
in a Duron 950Mhz with 88MB RAM (measured with the
Unix’s time tool). Table I presents the results.

Table I – Comparison
Architecture Clock (Mhz) Time to compute A

x B mod M (ms)
GPP 950 0.4
FPGA [4] 7.4 0.4
ASIC [5] 41 0.04
X4CP32 65.9 0.7

The results shown in Table I gives the idea of the
flexibility/performance tradeoff. Both ASIC and FPGA

have better performance, as it was expected, because of
heavy flexibility limitation. Their implementation
extracts the best possible results for one application only,
by exploiting its specific properties. The ASIC
implementation results are 20 times better than X4CP32’s
ones, however, it is important to notice that they are two
different technologies with two different approaches
(ASIC/Silicon and General-Purpose/FPGA). The FPGA
results are closer to X4CP32’s ones. That’s due the
similar technologies used. The difference in clocks
frequencies is a matter of project focus and cannot taken
into account, because once again the comparison is
between two different approaches (ASIC and General-
Purpose). The comparison with the GPP is the most
appropriated to analyze X4CP32 performance, because
they are both general-purpose processors. They have
similar results despite the huge clock frequency gap. The
silicon implementation of the GPP gives it a good
advantage over the FPGA X4CP32 prototype. This time
the comparison is between two similar approaches
implementations but two different technologies (Silicon
and FPGA).

The efficiency of the X4CP32 in this application can
increase by replicating the presented implementations to
take advantage of the parallelism of the processor.

6. CONCLUSIONS

This paper presented an implementation of the
Montgomery Multiplication and compared it with other
implementations. The results show that general-purpose
reconfigurable architectures can be very competitive in
this area of applications.
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