
PARAMETRIC VHDL MODELS OF ARBITERS FOR NETWORKS-ON-CHIP

Frederico G. M. E. Santo, Cesar A. Zeferino

Universidade do Vale do Itajaí – Centro de Ciências Tecnológicas da Terra e do Mar
Rua Uruguai, 458 – 88302-202 – Itajaí – SC – Brazil

E-mail: {fremariani, zeferino}@inf.univali.br

ABSTRACT

Networks-on-Chip (NoCs) will meet the major requirements
of future Systems-on-Chip (SoC) offering, at the same time,
reusability, scalability and parallelism, while coping with other
important issues, like power consumption and clock
distribution. One of the major subsystems of NoCs is the arbiter
used to build their routers. It is responsible to schedule the
packets incoming the input channels of the routers in order to
forward them to their output channels. In this paper, we present
some arbiter implementations, which were modeled in VHDL
and synthesized to FPGA. The major advantages of our models
relies on the use of parametric structures, which allows to reuse
a same model for different arbiter sizes. Results show the costs
and operating frequency of three arbiter models for different
router sizes.

1. INTRODUCTION

The last submicron technologies has allowed the building of
entire systems on a single chip, including, processor(s),
embedded memories and I/O controllers [1]. Such systems are
named Systems-on-Chip (SoCs) and they are usually based on
the reuse of pre-designed and pre-verified components, which
are called cores or IP (Intellectual Property) blocks.

In the current SoCs, the cores are usually interconnected by
means of both centralized or hierarchic bus architectures.
However, as it is known, the bus-based approach presents
several limitations is respect to its communication performance
and power consumption, and it will not meet the requirements
of future SoCs, which will integrate from dozens to hundreds of
cores on a single chip [2]. To meet such requirements, a new
approach has been proposed, and promises to be the major
solution for the problem of interconnect cores in future SoCs.
This approach is named Network-on-Chip (NoC), and is based
on the concepts used in interconnection networks for parallel
computer (multiprocessors and multicomputers).

A NoC can be defined as a set of routers and point-to-point
channels interconnecting cores in a SoC. The cores are attached
to the routers and these ones are interconnected among them.
Cores communicate by exchanging request and response
messages, which are forwarded by the routers and channels in
the sender-to- receiver path.

The major component of a NoC is its router, which is
composed by a crossbar, memory buffers (or FIFOs) and
scheduling controllers. Such controllers are responsible to
schedule an output channel for a message that incomes an input
channel of a router (output scheduling), or to schedule an
incoming message for an output channel when there are several
ones requiring the use of the same output channel (input
scheduling). The output scheduling is performed by routing
circuits which analyze the header of the incoming messages,
select and output channel for each message, and send a request
to the selected output channels. The input scheduling is
performed by arbitration circuits (or arbiters) which receive
requests from the routing circuits, apply some arbitration

algorithm based on a given priority criteria, and grant the
selected requests.

The performance of a router is strongly dependent on the
performance of its arbitration circuits. As fast the arbiter is,
faster the message forwarding is. Furthermore, these circuits
must ensure a fair use of the output channels by the input ones,
and that none message will stay indefinitely waiting for an
opportunity to be forwarded to its destination (problem known
as starvation [3]).

This paper presents the development of parametric VHDL
models of arbiters for routers of NoCs. In the following
sections, we present some architecture details of three arbiter
architectures and results of synthesis in FPGA.

2. ARBITER ARCHITECTURES

The arbiter of a router can be implemented in a centralized or in
a distributed way. In the first one, the arbitration is done by a
single module. It evaluates all the requests emitted by the
routing circuit(s), runs the scheduling algorithm having a global
view of the output channels usage, selects some of the
simultaneous requests, and grants the selected ones. In the
distributed approach, there is an arbitration module for each
output channel, which performs the same actions, but has a
local view of the usage of the arbitrated output channel.
Nevertheless, its architecture is simpler and allow the building
of faster arbiters.

In this paper, we focus on the development of parametric
VHDL models of distributed architectures. Each model has an
input parameter named n which defines the number of requests
to be scheduled. Varying the value of n for a given instance,
one can reuse a same model to synthesize arbiters with different
sizes.

In this paper, we considered three architectures, which has
the same interface and similar structure (Fig. 1).

R idle
n

n
G

n

P

Programmable
Priori ty Encoder

(PPE)

Priority
Generator

(PG)

n

Fig. 1. Arbiter’s interface and internal structure.

All the three arbiter architectures use a dynamic priority
scheme, but one of them is based on a random approach, while
the other two are based on a round-robin (rr) algorithm that
ensures fairness and starvation freedom. The three arbiters are
named: random, rr_ripple and rr_comb [4].

As is shown in Fig. 1, their implementations are based in a
programmable priority encoder (PPE), which receives n
requests (R) and selects on them by considering the current n-

bit priority code (P) generated by the priority generator (PG).
The PPE’s outputs are the n grant signals (G), which select only
one of the input requests, and the state signal idle, which says if
the arbitrated resource is free or busy .

2.1. Programmable Priority Encoder

The PPE’s behavior is the same for all the three architectures,
where the scheduling is performed by a set of arbitration cells.
It receives an n-bit one-hot code from the PG block, and the
first cell to begin the arbitration cycle is the only one for which
P equals 1. Each cell j receives the request R(j), the priority
signal P(j) and a signal, named ImedOut(j–1), that says if the
previous cell in the arbitration order has granted or not their
request. Also, each cell j has an output signal G(j) set only if
R(j) equals 1, and if P(j) or ImedOut(j–1) equals 1.

Internally, the cells of the random and rr_ripple arbiters are
structured in a wrap-around ripple loop, where the cell 0 looks
for the ImedOut of the cell n-1. In the rr_comb there is no such
loop, which eases the synthesis and timing analysis in automatic
tools that does not support combinatorial loops [4]. In fact, the
rr_comb arbiter is composed by two set of arbitration cells. The
first one (named ppe_not_round) implements a programmable
priority encoder without wrap-around connection. It performs
the arbitration beginning in the cell j for which P(j) equals 1,
and finishing in the cell n-1. If none of them grants any request,
them the requests 0 to j-1 are arbitrated by using the second set
of arbitration cells, which is based on a static priority encoder
(named spe).

2.2. Priority Generator

The PG architecture is not the same for all the three arbiters. In
the random scheduler, it is based on a ring counter loaded with
a one-hot code at reset – P(0) = 1. At each clock cycle, it
performs a shift operation, changing the priority code sent to the
PPE. It does not depend on the current state of the grant outputs
(the gray solid width line in Fig. 1).

In the round-robin arbiters, the PG block is based on a n-bit
parallel-parallel register also loaded with a one-hot code at reset
– P(0) = 1. However, at each arbitration cycle (not at clock
cycle), it is updated by a function applied over the new state of
the grant lines (the gray solid width line in Fig. 1). Such
function ensures that the request granted in the current
arbitration cycle will have the lowest priority level in the next
arbitration cycle.

3. SYNTHESIS RESULTS

The arbiters were described in VHDL by using parametric
structures which allow the automatic resizing and the synthesis
of instances with different number of request lines by only
changing the input parameter n.

They were synthesized to the FPGA Altera
EPF10K30ETC144-1x by using Quartus II Web Edition 2.2 [5].
Fig. 2 shows the number of LCs spent by each architecture for
configurations varying from 2 to 10 requests.

The results show that the random arbiter is the cheapest
architecture. However, it is known that it does not offer fairness
and can carry a packet to suffer starvation. In the other side,
round-robin arbiters ensure fairness and starvation freedom, but
are more expensive. Comparing the two round-robin,
architectures, the rr_comb is the cheapest one and, furthermore,
has no combinatorial loop, which is hard to be synthesized or
analyzed by some tools. Its architecture is detailed in [4], which
gives a good overview about arbiters for routers of
interconnection networks.

0

10

20

30

40

50

60

2 3 4 5 6 7 8 9 10

Number of requests (n)

N
um

be
r

of
 L

C
s

random rr_comb rr_ripple

 Fig. 2. Synthesis results.

To give some idea about the costs of the presented arbiters,
we compare its costs with the entire costs of a deterministic
router for NoCs presented in [6]. Such router uses a 4-request
exhaustive round-robin arbiter [1]. In a 32-bit, 5-port, 4-word
buffers configuration, the router uses 30 LCs in the same
FLEX10K device. If we consider the costs of five arbiters for
the three architectures presented here, the random would
occupy 85 LCs, the rr_ripple would demand 100 LCs, and the
rr_comb would spend 110.

4. CONCLUSIONS

In this paper, we presented the implementation of VHDL
parametric models for three distributed arbiter architectures for
Networks-on-Chip. Results shown that the models allows the
automatic generations of arbiters. Next works include the
implementation of these models in SystemC to perform a
system-level evaluation in order to measure the impact of the
arbiter architecture in the network performance.

5. ACKNOWLEDGMENTS

This work was supported by the “Assembléia Legislativa do
Estado de Santa Catarina” (“Artigo 170” program).

6. REFERENCES

[1] F.G.M.E. Santo, C. A. Zeferino, Projeto e Avaliação de
Árbitros para Redes-em-Chip . Hífen. Uruguaiana-RS, 2002.
pp.85-90.
[2] P. Guerrier and A. Greiner, “A Generic Architecture for on-
Chip Packet-Switched Interconnections”, DATE’2000, IEEE
Press, 2000. pp.250-256.
[3] J. Duato et al., Interconnection Networks: an Engineering
Approach, IEEE CS Press, 1997. 515p.
[4] P. Gupta, P.; N. McKeown, N. “Designing and
Implementing a Fast Crossbar Scheduler”, IEEE Micro, v.19,
n.1, Jan.-Feb. 1999. pp.20-28.
[5] Altera. Quartus II Installation & Licensing for PCs Manual.
San Jose : Altera Corporation, 2002. 54p.
[6] C. A. Zeferino, A. A. Susin. “SoCIN: A Parametric and
Scalabe Network-on-Chip”. to appear in SBCCI’2003.

