
COMPARING SYSTEMC AND ARCHC THROUGH THE MIPS PROCESSOR MODELING

Marcio Rogério Juliato, Paulo Cesar Centoducatte

Institute of Computing (IC) – State University of Campinas (UNICAMP)

ABSTRACT

This paper discuss the MIPS processor modeling in

SystemC and ArchC, at the same time it compares both
languages regarding processor architecture description.
SystemC solves many current problems of software-
hardware co-design and verification, on the other hand it
is not suitable for automatic generation of software tools.

In order to address this problem, a new architecture
description language (ADL), called ArchC was created.
ArchC’s main goal is to facilitate processor description,
as well as to provide enough information, at the right
level of abstraction in order to allow architecture
exploration through the automatic generation of software
tools. At the end of this job, we could compare the
developed models, and then realize how useful and
powerful was to describe processors using ArchC instead
SystemC.

1. INTRODUCTION

Considering the increasing complexity in embedded

system designs, a tool for evaluation of a new designed
instruction set architecture which automatically generates
a software toolkit composed by assemblers, linkers,
compilers and simulators became mandatory. It is this
toolkit that allows designers to get an executable
specification of a new architecture to experiment with
different instructions sets and resources at very first
stages of the design process.

SystemC is among a group of design languages and
extensions being proposed to raise the abstraction level
for hardware design and verification. The language is
suitable to model any kind of hardware at several levels
of abstraction, but it is not suitable for automatic
generation of a software development toolkit. How could
one identify, for sure, how many instructions a processor
can execute, which are these instructions and respective
formats, whether the processor has a pipeline or not and
what and how many are the stages of this pipeline from a
generic SystemC processor description?

In order to address these problems, our research group
at the Computer System Laboratory (LSC) created a new
ADL called ArchC. ArchC gets an architecture
description and automatically a SystemC model of the
architecture, so designer compile this model and get an
executable application of the processor.

2. MODELING

The MIPS processor was chosen due to its architecture

and instruction set simplicity and regularity, allowing the

coverage of the most actual RISC processor
characteristics. It has a simple but interesting pipeline,
with different instruction formats, and besides, data
forwarding and pipeline stall. The modeling was based on
the datapath[1] shown in Figure 1.

Figure 1: MIPS Datapath

On the MIPS architecture we have three instruction

formats, named R, I and J, and five pipeline stages,
named IF (Instruction Fetch), ID (Instruction Decode),
EX (Execution), MEM (Memory Access) and WB (Write
Back). The processor description paradigm was different
from SystemC to ArchC models, but having similar
abstraction levels.

4.1. The SystemC Model

On the SystemC model was used the paradigm of the

instruction moving though the pipeline, like the real
processor. This was modeled with SystemC processes
corresponding to each pipeline stage, having these
processes a switch structure to discover which instruction
was received. Like the real processor the description
counts on a register bank (RB) and pipeline registers.

The pipeline module implements what has to be done
for each instruction at a determined pipeline stage. Part of
the pipeline implementation can be observed in Figure 2.
It is important to cite that the main goal of this description
was simulation, however we have accurately followed the
synthesis guidelines for SystemC allowing its synthesis
without great changes. The Figure 3, shows the interface
of the simulator for this model.

void pipeline::execution_stage() {

switch(reg_ID_EX[ID].read()) {
case LW: break;
case SW: break;
case ADD:

reg_bank[reg_ID_EX[RD].read()].write(
reg_bank[reg_ID_EX[RS].read()].read() +
reg_bank[reg_ID_EX[RT].read()].read());
break;

:
Figure 2: Pipeline implementation in SystemC

Figure 3: The MIPS model simulator

4.2. The ArchC Model

The first step for modeling in ArchC is to describe the

processor’s characteristics, regarding the instruction set
and architecture resources. The designer has to inform
instruction names, assembly syntax and its correspondent
formats, as well as some information about the structure
of the architecture like register banks and pipeline.

Based on these data is generated a template to be filled
with the behavior for each instruction by the designer,
thus reducing the modeling time. Part of the Instruction
Set Architecture (ISA) description is shown in Figure 4,
where we can observe the specification of all the fields of
each instruction format, as also the opcode for the
instruction decoding. Another necessary issue is the
pipeline registers specification, what can be done
similarly to the instruction format.

:
ac_format Type_R ="%op:6 %rs:5 %rt:5 %rd:5

%shamt:5 %funct:6";
ac_format Type_I ="%op:6 %rs:5 %rt:5 %imm:16:s";
ac_format Type_J ="%op:6 %addr:26";

ac_instr<Type_R> add, sub,...;
:
add.set_asm("add %rs, %rt, %rd");
add.set_decoder(op=0x00, funct=0x20);
:

Figure 4: Describing the instruction set

In ArchC the instruction behavior can be divided in

order to represent its execution into a pipeline, i.e., the
designer can inform what an instruction does on each
pipeline stage separately. This is accomplished through a
C++ switch statement, like shown in the Figure 5. In the
same figure we can observe the implementation of the
instruction add. Both models implement all the
characteristics of the MIPS processor, among them data
forwarding and pipeline stalls. Facilities for pipeline stalls
and flushes are also provided by ArchC.

void ac_behavior(add) {
switch(stage) {
case _IF:

IF_ID.npc = ac_pc + 4; break;
case _ID:

ID_EX.data1 = RB.read(rs);
ID_EX.data2 = RB.read(rt); break;

case _EX:
EX_MEM.alures = ID_EX.data1.read() +

ID_EX.data2.read(); break;
:

Figure 5: Describing the add instruction behavior

4. RESULTS

There are many ways of modeling processors, but this
work focused on cycle accurate models, i.e., we can check
out the states of the pipeline as well as the registers at
each clock cycle. In both model simulators it is possible
to initialize the data memory, register bank, write and
execute real programs, and also see what instruction is in
execution on each pipeline stage. This can be very useful
for students, or designers working in companies or at
universities, in order to validate the design through
comparison of both models results.

Studying the SystemC description we can realize that,
even with a maximum of standardization, is almost
impossible to determine a consistent and robust way of
describing processors that can simplify the automatic
generation of a software development toolkit. All these
problems arise due to implementation freedom of the
language. However this task is extremely simplified when
working on an ArchC description, because we know the
instruction formats, the instruction assembly syntax,
among other architecture details. These data are collected
by a parser and processed resulting in the generation of
cycle accurate simulators written in SystemC.

5. CONCLUSIONS AND FUTURE WORK

During the MIPS description we could realize that the

SystemC offers many modeling possibilities, however in a
non-standardized way. With ArchC we have a well-
defined way of describing processors, thus reducing the
development time, and also allowing the automatic
generation of tools as discussed above. These are very
important issues to reduce the time to market of a new
product.

The conception of both models presented in this paper
was important to contribute to the ArchC’s improvement.
Next steps include the description of more complex
architectures like DSP’s and VLIW processors. We have
chosen the TMS320C62x processor for this purpose,
which combines both characteristics.

6. REFERENCES

[1] John L. Hennessy, David A. Patterson, Computer
Organization & Design: The Hardware/Software Interface,
Morgan Kaufmann Publishers Inc., 2nd Edition, 1997.

[2] Dominic Sweetman, See MIPS Run, Morgan Kaufmann
Publishers Inc., 1999.

[3] Synopsis Inc., SystemC User’s Guide, Synopsis Inc., 2nd
Edition, 2001.

[4] Synopsis Inc., Describing Synthesizable RTL in SystemC,
Synopsis Inc., Version 1.1, January 2002.

	COMPARING SYSTEMC AND ARCHC THROUGH THE MIPS PROCESSOR MODELING
	ABSTRACT

