
DESCRIBING AND TESTING ARITHMETICAL CIRCUITS
IN A FUNCTIONAL LANGUAGE

Frederico A. Mameri

fred@comp.ufu.br
Hélio D. Batista Júnior
darlan@comp.ufu.br

Nélio M. M. Alves
nelio@comp.ufu.br

Sérgio M. Schneider
sergio.schneider@

facom.ufu.br
Faculdade de Computação - Universidade Federal de Uberlândia

ABSTRACT

We are working on a research project, which includes the
implementation of a hardware description language
(HDL) embedded in the lazy functional language
Haskell. This paper discusses how “functional” HDLs
can ease the task of describing and testing arithmetical
circuits structurally. Some small, didactical examples are
shown using the implemented language.

1. INTRODUCTION AND MOTIVATION

This work follows a particular style of hardware
description, which models the full history of the sequence
of values on a wire by a stream, where the ith element of
the stream represents the value carried by the wire at the
ith clock tick in a simulation. In this context, circuit
components are modeled by functions that, essentially,
receive input streams as arguments and return output
streams as results. Simpler components can be grouped
together to generate more complex ones, as in functional
composition.

This description style is not new. Since the early
eighties [4] many efforts have been carried out in that
direction. However, such style is probably new to many
hardware designers, usually involved with widely used
languages such as VHDL and Verilog.

During the design process of arithmetical circuits in
widely used HDLs, such as VHDL, we observed a few
aspects not interesting to the designer, such as the
difficulty of proving the correctness of the circuit (out of
the scope of this paper), the length of the code and the
constant concernment about the language syntax. On the
other hand, “functional” HDLs have shown to be both
powerful and easy, and also very productive.

This paper presents the advantages of describing
arithmetical circuits in a functional language over widely
used HDLs, which is part of a larger project held by the
computer science graduate program of our university.

1.1. OVERVIEW OF THE PAPER

Section 2 and Section 3 are concerned with the
advantages of describing arithmetical circuits in a
functional HDL and testing the circuits respectively.
Then we cite related work and, finally, we discuss
conclusions and future work.

2. DESCRIBING CIRCUITS

The description of arithmetical circuits in a language
implemented as a Haskell [3] embedded library inherits
all the advantages of it, such as lazy evaluation (allowing
mutually recursive definitions appearing in circuits with
feedback), productivity due to short code, ease of proving
the correctness of the circuit (because of the very simple
semantics of this description style), strong typing, and
legibility.

2.1. A SIMPLE EXAMPLE

A half adder is a circuit that takes two bits as input and
outputs their sum and the carry out bit. Let us consider a
VHDL code for a half adder:

library ieee;
use ieee.std_logic_1164.all;

entity halfAdd is
 port (a, b : in std_logic;
 sum, carry : out std_logic);
end halfAdd;

architecture comp of halfAdd is
begin
 carry <= a and b;
 sum <= a xor b;
end comp;

It is very clear that most of the code is spent with the
language syntax rather than with the circuit description
itself. Below we describe the same circuit using Haskell:

halfAdd (a, b) = (sum, carry)
 where
 sum = xor2 (a, b)
 carry = and2 (a, b)

The above function gives an idea of how functional
languages can be powerful, productive, and simple. The
simplified syntax increases the designer productivity and
also the understand of someone who is learning digital
circuits, once one will be able to focus on the circuit
itself, rather than on the language used for describing it.
We are supposing that the logical gates xor2 and and2
belong to the basic library of the language.

2.2. A BIGGER EXAMPLE

Next we show the full gate-level description of a
sequential multiplier and its subsidiary circuits: a full
adder and a shift register. The former is a circuit that
takes two operand bits and a carry-in bit as input and
outputs their sum and the carry out bit. The ladder is a

circuit used mainly for storage of digital data. Finally, the
sequential multiplier is an arithmetical circuit that takes
two numbers of four bits and outputs their product.

mult (reset,[a0,a1,a2,a3],[b0,b1,b2,b3]) = s
 where
 s1 = shiftreg (reset, [a0,a1,a2,a3])
 s20 = and2 (b0,s1)
 s21 = and2 (b1,s1)
 s22 = and2 (b2,s1)
 s23 = and2 (b3,s1)
 (s,z1) = fullAdd (dff z1,(s20,dff y1))
 (y1,z2) = fullAdd (dff z2,(s21,dff y2))
 (y2,z3) = fullAdd (dff z3,(s22,dff s23))

In the above code, dff is a D flip-flop, which also
belongs to the basic library.

Designing the same circuit in VHDL would be very
cumbersome, for its code is very long and not
straightforward.

The Haskell code of the full adder and the shift
register is shown below:

fullAdd (carryIn, (a, b)) = (sum, carryOut)
 where
 (s1, c1) = halfAdd (a, b)
 (sum, c2) = halfAdd (carryIn, s1)
 carryOut = or2 (c1, c2)

shiftreg (reset, [x0,x1,x2,x3]) = out
 where
 out = mux1 (reset, (dff sx1, x0))
 sx1 = mux1 (reset, (dff sx2, x1))
 sx2 = mux1 (reset, (dff sx3, x2))
 sx3 = mux1 (reset, (low, x3))

3. TESTING CIRCUITS

Testing the circuit is very simple. All one has to do is
using the sim function, provided by the system we
implemented, which receives the circuit and an input list.
Below there is an example of a halfAdd simulation, from
a Haskell interpreter prompt:

Circ> sim halfAdd [(high,low),(high,high)]
[(1,0),(0,1)]

Testing the multiplier is also very easy. Below we
define an input list (in the source code), representing the
multiplication of 9 and 7:

x = [high,low,low,high] -- (decimal 9)
y = [high,high,high,low] -- (decimal 7)
input = [(high,x,y),(low,x,y),(low,x,y),
 (low,x,y), (low,x,y),(low,x,y),
 (low,x,y), (low,x,y)]

Now, the simulation in the Haskell interpreter prompt
can be performed:

Circ> sim mult input
[1,1,1,1,1,1,0,0]

The resulting value is the decimal 63, as expected.
The lazy evaluation allows us to provide a list of as

many signals as wanted. That same feature provides

infinite lists evaluation, which can be very interesting to
simulate real systems, for the signals in them are
potentially infinite.

4. RELATED WORK

Our work was strongly inspired in Lava [2], a system
embedded in Haskell that can perform interesting circuit
interpretations including simulation, verification and
translating to VHDL. Another interesting HDL
embedded in Haskell is Hawk [5], created for designing
superscalar microprocessors, but implemented in a
different way if compared with Lava.

5. CONCLUSIONS AND FUTURE WORK

Functional languages provide clear, concise and
polymorphic specifications that can be easily tested
through a simple simulation function. Combined with
lazy evaluation, high-order functions and type classes,
which form the basis of the modern functional languages,
can significantly increase the productivity in the logic
design process.

Our next step is describing and simulating
microprocessors, that is, a set of digital and arithmetical
circuits that takes instructions and executes them. Also,
we plan to build functions for outputting circuits in
Verilog and EDIF, in order to extend the link with other
designing tools.

The system described is based on free software. All
that is needed is a simple ASCII text editor and a Haskell
interpreter like Hugs [1].

6. REFERENCES

[1] http://www.haskell.org/hugs/
The Haskell Interpreter Hugs

[2] K. Claessen. “Embedded Languages for Describing
and Verifying Hardware”. PhD thesis, Chalmers
University of Technology and Göteborg University,
Göteborg, Sweden, April 2001.

[3] Hudak et al., P., Report on the Programming
Language Haskell, A Non-Strict, Purely Functional
Language, Version 1.2, ACM SIGPLAN Notices, 1992.
See http://www.haskell.org/definition for latest version

[4] S. Johnson. Synthesis of Digital Designs from
Recursion Equations. The ACM Distinguished
Dissertations Series, The MIT Press, 1984.

[5] Matthews, J. and Cook, B. and Launchbury, J.,
Microprocessor specication in Hawk, IEEE International
Conference on Computer Languages, 1998.

