
APPLE PARROT: A CIRCUIT PARTITIONER

Diogo Fiorentin, Renato Hentschke, Ricardo Reis

Universidade Federal do Rio Grande do Sul – Instituto de Informática
{dfiorent, renato, reis}@inf.ufrgs.br

ABSTRACT

The Apple Parrot is a tool developed to divide big circuits
into smaller ones. Placement is a complex problem and as
the circuit sizes increase, the partitioning is a necessary
step. Through the partitioning process proposed, several
circuits are created from one circuit. The circuit is
partitioned in four blocks and these blocks are partitioned
recursively until all of them have fewer cells than a pre-
stipulated limit. The Fiduccia-Matteyses method is taken
to decide to what partition each cell will be assigned. The
experiment results show that the circuits created have
almost the same area and number of cells. However the
number of nets linking the partitions is still too high.

1. INTRODUCTION

As the circuits grow in size, the placement problem
becomes even more complex. A circuit that has a great
number of cells needs a long time to be placed. This
problem can be minimized by partitioning great circuits in
several smaller ones because the placement time is not a
linear function. Several small circuits are placed faster
than one great circuit.

The problem consists in creating smaller circuits from
one big circuit. Each small circuit has to be independent
of the others as much as possible. Thus, it is necessary
minimize the cells connection between different circuits.

The partitioner works with circuits described in a
logic netlist. These files are in the Spice format. As
output, it returns several Spice files. Every new file
contains a group of cells from the original circuit. The
partitioning process is performed by a hierarchical
quadratic method while the partitioning itself is
performed Fiduccia-Matteyses algorithm [4] that is a
famous and largely used heuristic. There are several
previous works that are based on quadratic partitioning of
the circuit, like [6] [3] [1].

2. THE CELLS DIVISION METHOD

The Apple Parrot partitioner is based on a heuristic
quadratic method to separate the cells in blocks. In this
process one block derives four new blocks of cells. This
process is repeated recursively until all blocks have fewer
cells than a pre-stipulated limit.

Fig. 1 – Recursive Quadratic Partitioning method

3. THE FIDUCCIA-MATTEYSES METHOD

The method chosen to measure about what partition each
cell must stay is the Fiduccia-Matteyses method (FM)
described in [4][2]. The objective of FM is to minimize
the number of nets that link cells in different partitions.
This objective is known in the literature as min-cut [1][5].

The algorithm has some particular novelties that are
very interesting to the partitioning of integrated circuits:

- It supports hyper-graphs. In a circuit, the nets are
hyper-edges and the cells are the nodes. A net will cut the
partitions if there is cells in different partitions.

- There is a balance function that is able to reach area
equilibrium for the partitions.

- Fast cuts update. As the FM algorithm deals with
hyper-graphs, the nets cutcan be evaluated and updated
easily.

- FM is able to perform some iterations that
deteriorate the current solution if it can achieve a more
optimized solution in the next steps.

Fiduccia-Matteyses is an iterative heuristic. The initial
solution is generated randomly. In [2] there are some
experiences showing that the random algorithm is a good
starting point to FM since the partitions have similar
number of cells. The algorithm works with single
movements of cells from one partition to another. The net
cut is a metric to evaluate if a movement is good or not.

FM uses a balance criterion function to the area
equilibrium. If the function were not used probably all
cells would be put in just one partition, which is a valid
partitioning with a zero cut! The algorithm will not allow
movements that violate the balance criterion.

4. CREATING NEW CIRCUITS

This is the last step of the Apple Parrot. Each partition is
converted to a Spice netlist file. The main tasks of this
step are:

1. Converting nets linking different partitions in
input/output pins;

2. Distributing the original circuit’s pins among the
new circuits;

3. Identifying where every new Spice netlist file must
be placed in the full circuit.

Three things must be considered to create i/o pins
from nets: the name, the side and the type. The name is
the net name. The side is chosen by an arithmetic average
function considering the position of all cells connected.
The block position is given by the quadratic organization
of the partitions. The type is chosen evaluating in what

partition is located the net driver. If it is on the current
partition, the pin will be an output pin. Otherwise, the pin
will be an input pin.

The position of the block can be identified adding an
ID in the file’s name. Each new circuit has a code that is
generated during the partitioning process. Every time a
cell block is divided, a character from ‘1’ to ‘4’ in its last
position increases its code. It is showed in the figure 2

5. RESULTS

Six circuits were submitted to the Apple Parrot
partitioner. The partitioning was performed in a Pentium
III 450 MHz. The results are shown in table 1. SD is the
standard deviation.

Fig. 2 – Block Position Identification
Tab. 1 – Partitioning results

Cut (nets) Cells/partition Estimated Area/partition (µm2)Circuit Number of
partitions

CPU
time (s) Average SD Average SD Average SD

4 367 242.00 20.65 1285.50 2.06 83880.00 64.52Alu4
(5142 cells) 16 404 260.25 18.21 321.38 2.32 20970.00 59.53

4 907 380.50 20.16 1793.00 5.20 117997.50 53.56Apex1
(7172 cells) 16 993 375.00 22.27 448.25 4.29 29499.38 46.50

4 52 166.50 4.50 556.25 6.42 35943.75 54.47Apex7
(2225 cells) 16 85 244.38 14.75 139.06 3.36 8985.94 46.98

4 463 567.50 11.54 1369.25 10.1 40181.25 35.77Misex3
(5477 cells) 16 521 519.12 29.18 342.31 6.18 10045.31 35.07

4 201 266.50 7.76 768.25 5.36 52211.25 118.29C6288_2x2ce
(3073 cells) 16 225 122.25 11.69 192.06 2.41 13052.81 95.79

4 9 69.5 4.15 157.25 6.34 10961.24 50.17C1355_2x2ce
(629 cells) 16 12 31.75 6.07 39.31 2.14 2740.31 85.30

The table above shows that the balance criterion is
well succeeded to keep the partitions areas with
approximately the same size and same number of cells.
This result does not depend on the number of sub-circuits
created neither on the circuit. It is good because all
circuits created by the partitioning will have similar
placement complexity.

However the cut is too high. For the circuit Alu4
about 250 I/O pins must be created in each partition to
connect the cells. By the experiments in table 2,
decreasing the number of cells in each partition does not
decrease the cut of the partitioning.

6. CONCLUSIONS AND FUTURE WORKS

This paper presents Apple Parrot, a partitioning tool to
decrease the complexity of the placement problem of
large circuits. The experimental results show that the tool
is able to partition a design in several sub-circuits with
similar area and similar number of cells

The proposed method generates sub-circuits with I/O
pins that can be independently placed and routed. After
the process, the blocks must be placed to complete the
routing. The Apple Parrot suggests one placement derived
from the quadratic arrangement of the partitions.

As limitations of our method, we see that the cut is
still too high.. As future work, we are planning to verify
this by running the full Parrot tool kit that, in addition to
the Apple Parrot, it includes a cell placer, a layout
generator and router. Also, we observed that we were not
able to reduce the cut by decreasing the partition size.
That is a huge limitation and it must be solved.

Also, as future work we will experiment other
heuristics for bi-partitioning.. Other attempt to reduce the
net cut is by the implementation of terminal propagation.

This would make cells connected stay near each other in
neighbor partitions.

7. REFERENCES

[1] CALDWELL, A.; KAHNG, A.; MARKOV, I. Can
Recursive Bisection Alone Produce Routable
Placements?. In: DESIGN AUTOMATION
CONFERENCE, DAC, 37., 2000, Los Angeles.

[2] HENTSCHKE, R. Algoritmos para o Posicionamento de
Células em Circuitos VLSI. Dissertação de Mestrado.
PPGC – UFRGS, 2002.

[3] PARAKN P., BROWN R., SAKALLAH K. Congestion
Driven Quadratic Placement. In Proceedings of 35th

Design Automation Conference IEEE/ACM, 1998.
[4] SAIT S., YOUSSEF H. VLSI Physical Design

Automation – Theory and Practice. New York: IEEE,
1995.

 [5] WANG M., LIM S., CONG J. , SARRAFZADEH M.
Multi-way Partitioning Using Bi-partition Heuristics. In:
ASIA AND SOUTH PACIFIC DESIGN AUTOMATION
CONFERENCE, 2000

[6] YILDIZ, M.; MADDEN, P. Improved Cut Sequences for
Partitioning Based Placement. DESIGN AUTOMATION
CONFERENCE, DAC, 38., 2001, Las Vegas.

