
LOGIC COMPLETION DETECTION IN PROGRAMMABLE LOGIC DEVICES

C. A. Sampaio, R. T. Vaz da Silva, A. I. Reis, R. P. Ribas
Instituto de Informática – UFRGS

CxP.15064, CEP 91501-970 Porto Alegre – RS (BR)
{csampaio, rsilva, andreis, rpribas}@inf.ufrgs.br

ABSTRACT

The advantages of asynchronous circuits, in particular
self-timed implementations, are being seriously
considered to reduce the limitations in synchronous
design. Today Programmable Logic Devices – PLDs
(FPGAs and CPLDs), on the other hand, are a very
attractive option to ASIC implementation due mainly to
the fast prototyping feature. Design techniques to make
the Logic Completion Detection for self-timed circuits and
the performance of PLDs when implementing these blocks
are discussed on this paper. An 8-bits Ripple Carry Adder
is used as case study, taking into account programmable
devices from Altera Inc. and Xilinx Inc. and their
respective CAD environments.

1. INTRODUCTION

The asynchronous architecture of circuits was
proposed long time ago, in the 50´s. Nowadays it has
gained again the focus of the academic and industrial
communities, due to some advantages over the traditional
synchronous design, which is becoming very limited in
some aspects, like the clock distribution over the chip.

Some of these advantages are the low and constant
power dissipation, once there is no global clock, each part
of the circuit works only when requested, otherwise
remain unharmed. It also reduces current spikes and the
emission of electromagnetic noise. The asynchronous
circuits compute on their best speed, because it does need
to be projected to wait for the worst case latency to move
to the next process [1].

On the other hand, the use of Programmable Logic
Devices (PLDs) has greatly increased. It is justified by the
fast prototyping of the ASIC (Application Specific
Integrated Circuit), the approximate zero risk of project
since the logic cells and components are easily
reconfigured, and the technological advances which have
increased the density and complexity of the circuits
implemented in a single chip.

The article’s purposes are to discuss some techniques
to perform the logic completion detection in
combinational blocks for self-timed circuits and to
evaluate commercial PLD’s performance when
synthesizing these blocks. Components from Altera and
Xilinx vendors have been considered to synthesize the
case study, an 8-bits Ripple Carry Adder using the dual
rail protocol.

2. LOGIC COMPLETION DETECTION

In the asynchronous circuit design, the absence of

global clock signal demands the use of handshaking
protocols to coordinate the execution of the signal
processing blocks. In other words, these protocols are
responsible for the correct functionality of the circuit,
since the control signals communicate the end of a
calculation of one block and the data availability to
another block which could, in turn, start the next
computation [1].

In this approach, the signal processing, executed by the
combinational blocks (here called function blocks), has to
wait for a request command before starting the
computation and provide the logic completion detection
(acknowledge signal). The communication protocol uses
the request and acknowledge signals to activate the
function blocks and then the data flows.

The Dual Rail Protocol was used in order to implement
the Logic Completion Detection on the commercials
PLDs, since any other methodology is not suitable in
these devices. And dealing with this protocol two ways
are possible in the PLDs, one through Delay Insensitive
Minterm Synthesis (DIMS) [2] and the second Sum-of-
Products and Product-of-Sums method (SOP/POS). These
methods generate hazard-free blocks, but unfortunately
both cases demand a considerable amount of area.

In DIMS approaches, we redesign the way how to
elementary Gates are constructed. This new elementary
gates are now constructed through a combination of “C-
elements” an “OR” gates in a PLA like structure. DIMS
are classified as strongly indicating implementations,
which means to say that its outputs never become valid
before all the inputs and its outputs never become empty
before all of its inputs do.

The “C-elements” cells that compose the circuits
generate all minterms needed to implement the function.
The truth table that generates this kind of circuits is
divided in three groups of rows that define the outputs
when the inputs are: (1) the “empty” word (the circuit
responds setting all outputs at low level logic); (2) the
intermediate values (the circuit responds without
changing the outputs); (3) an “valid” input (the circuit
responds setting the correct value in the output).

Figure 1 exemplifies how can be implemented an
AND logic function using dual rail and DIMS. Each logic
value is represented by its true and false signals.

mailto:@inf.ufrgs.br

Figure 1 – AND gate using DIMS

The sum-of-products and product-of-sums (SOP/POS)

method is other alternative dealing with dual-rail protocol,
once its outputs are hazard-free. In this method the
traditional truth table are used, as well all the well known
methods of extracting Boolean equations from it, like the
Karnaugh map. And merging SOP and POS blocks in the
same circuit does not cause any risk. The truth table must
have empty outputs, true and false values set to ‘0’, for
every combination of inputs where one of them is empty.
And for the cases where any input has the true and false
values set to ‘1’, the output can be “don’t care”, because
this never happen in the dual-rail protocol. This process
generates function blocks called weakly indicating,
because it starts to compute as soon as it has some valid
inputs and it produces empty outputs just after receiving
some empty input [2]. It deserves only a little remark; all
outputs should not become valid before all inputs do and
exactly the condition for the empty transition.

Facing the two methodologies exposed above it is
possible to take some conclusions. The DIMS logic is
easily extracted, once it works with a simplified truth
table where the signals are represented with values ‘true’
or ‘false’ instead of their binary codification. In the other
hand the circuits created with SOP/POS are potentially
faster and smaller, due to all simplifications that can be
made on them. Another difference is about the circuit
behavior. Dims generates strongly indicating blocks, then
some extra circuitry must be added to ensure that, even if
an input will keep its value constant, it alternates between
valid and empty states. While with SOP/POS there isn’t
this problem and a constant input can keep its valid state,
since one of others inputs alternates their states, saving in
that way some silicon area.

3. CASE STUDY AND RESULTS

Altera Max plus II v 10.1 and Xilinx WebPack ISE 5

CAD tools were used to synthesize the circuit exposed
before on the commercial PLDs and to extract the results
of these implementations. From Altera it was taken into
account the Max9000 (CPLD) and the Flex10k (FPGA)
families and from Xilinx the Virtex2 (FPGA) family.

Three implementations of an 8-bit Ripple Carry Adder
were made, one synchronous and two asynchronous

confronting the methodologies discussed here. Tables 1
expose the results obtained. For the asynchronous circuits
the time delay (Td) measured was the mean value of the
worst and best cases, due to their characteristics of
working in the best speed for each input vector.

Table 1a. Results for Max9000
 # LCs * Td (ns)

Synchronous 24 26,8
Dims 83 79,5

SOP/POS 72 66,5
* LCs – logic cells

Table 1b. Results for Flex10k
 # LCs Td (ns)

Synchronous 16 26,8
Dims 101 60,8

SOP/POS 77 80,5

Table 1c. Results for Virtex2
 # LCs Td (ns)

Synchronous 23 8,237
Dims 101 25,132

SOP/POS 168 33,857

4. CONCLUSIONS

This work tried to analyze methods to design function
blocks for self-timed circuits which were capable of doing
the logic completion detection in PLDs. Taking the results
we can see that the SOP/POS, method has a better
performance in most cases and also regarding to some
advantages shown in the end of section 2, this method can
be considered as a reasonable choice. Analyzing the
results it becomes clear that an asynchronous circuit
consumes a greater area on common PLDs, specially due
to their lack of structures to help detecting the end of
calculation, and consequently generates a greater delay.
As a future work it can be studied a new PLD model
which is dedicated for the implementation of
asynchronous circuits since the common PLD used
nowadays don’t fit well in this kind of approach.

5. ACKNOWLEDGMENTS

The students C. Sampaio and R. Vaz da Silva receive
their scholarships from FAPERGS and CNPq/Milenio
respectively, and the professors A. I. Reis, R. P. Ribas
have research support from CNPq.

6. REFERENCES

[1] Ivan E. Sutherland, Micropipelines. Communication
of the ACM, June 1989
[2] Jens Sparso and Steve Furber. Principles of
asynchronous circuit design – A system Perspective.
Kluwer Academic Publishers, September 2001

