
MICROKERNEL FOR NODES OF WIRELESS SENSOR NETWORKS

Vinícius Coelho de Almeida1, Breno Augusto Dias Vitorino1, Luiz Filipe Menezes Vieira1, Marcos
Augusto Menezes Vieira1, Antônio Otávio Fernandes1, Diógenes Cecílio da Silva2, Claudionor

Nunes Coelho Jr. 1

1Departamento de Ciência da Computação, Universidade Federal de Minas Gerais
2Departamento de Engenharia Elétrica, Universidade Federal de Minas Gerais

Avenida Antônio Carlos, 6627, Belo Horizonte, Minas Gerais – Brasil
{makish, vitorino, lfvieira, mmvieira, otavio, coelho}@dcc.ufmg.br, diogenes@ufmg.br

ABSTRACT

Wireless sensor networks, that have become possible thanks to
advances in VLSI, can involve a large number of devices, with
sensing and communication capability, low-power
consumption and small computing power. These small
embedded devices, made of thousands of integrated circuits,
can be deployed, for example, at harsh environments to
perform data collecting. The microkernel of these devices’
microcontrollers must be energy -efficient, and still supporting
concurrent execution with environment sensing.

In this work, it is presented a case study about an operating
system for wireless sensor networks, in order to help to define
the characteristics to be implemented in a new microkernel.
The features considered worthwhile from existing operating
systems for embedded devices and nodes in wireless sensor
networks will be implemented.

1. INTRODUCTION

Wireless sensor networks (WSNs) [1] may be composed from
thousands of nodes, which possess storing, processing,
communication and sensing capacity, although with strong
limitations. They must have self-configuration and adaptation
mechanisms to support fault-tolerance. Moreover, they may be
equipped with different sensors, given the applications' nature
inside them, such as: temperature, pressure, movement, etc.

A microkernel may be defined as an operating system
(OS) core. Its objective is to ease the programmer's work in
developing application for a platform and to manage the
resources that constitute the sensor node. The nodes'
microkernel must provide to the programmer routines that
allow the development of his applications.

This paper is part of SensorNet project [2], whose research
is focused in architecture, protocols, management and
applications in WSNs. The final goal of this work is to
develop a microkernel for nodes in WSNs, using eligible
concepts from existing systems. This microkernel will run in a
device still being developed in that project.

In Section 2, it will be explained some features of one of
the studied systems: TinyOS [3], and a conclusion about this
OS; in Section 3, details about the proposed work and its
current status are discussed.

2. TINYOS

Initially developed at Berkeley University and actively
supported by a large community of users, TinyOS is an OS
that provides concurrent execution for embedded networked
sensors with scarce hardware resources, using Motes
architecture [4]. It is an open source software platform and

tool-chain designed to support concurrency intensive
operations, using minimal hardware requirements.

The relevant features of TinyOS are its implementation
language for applications, architecture, concurrency and
communication models.

2.1. Implementation language

In order to embody the structuring concepts and execution
model of TinyOS, it was designed a C extension, nesC [5].
Every component in TinyOS in v.1.0.0-1 was coded in this
language, whose basic concepts are:

• Separation of construction and composition: applications
are made of components, which are assembled to form most
complex applications.

• Specification of component functionality by means of set
of interfaces: interfaces may be provided or used by
components. The provided interfaces are intended to represent
the functionality that the component provides to its user; the
used interfaces represent the functionality the component
needs to perform its job.

• Interfaces are bi-directional: they specify a set of
functions to be implemented by the interface's provider (i.e.
commands) and a set to be implemented by the interface's user
(i.e. events).

2.2. Component-based architecture

Every application possesses at least a configuration file and a
module or implementation file. This configuration file
specifies the application components set and how they invoke
themselves. In the implementation file are listed the provided
and used interfaces by a component.

An application uses one or more components, being
possible to reuse some simpler components in order to create
most elaborated ones. This creates a hierarchy of layers, where
higher components originate commands to lower components,
and the latter signal events to the former. Lowest-level ones
represent the hardware itself.

2.3. Event-based concurrency model

Concurrency is made through the use of events and tasks,
using two-level scheduling. At lowest priority level are the
tasks and at highest one are the events.

Tasks are atomic in relation to other tasks, running into
completion (at least that preempted by events). They can call
lower components (i.e. that compose it) commands, signal
higher component (i.e. that use it) events and schedule other
tasks in a component. Tasks are used to perform longer
processing operations, such as background data computation,

Events are generalizations of interrupt handlers,
propagating processing upwards (by means of signaling other
events) or downwards (by means of call of commands). They
are executed when signaled, preempting execution of a task or
another event.

TinyOS provides atomic sections in order to avoid data
races due to concurrent updates to shared state. In an atomic
section, hardware interrupts are disabled.

2.4. Active Messages communication model

Active Messages (AM) is a mechanism, which allows to the
sender to determine a handler that will be invoked in receiver.
The data are extracted from the network and aggregated into
the ongoing computation, eliminating buffering in the sending
and receiving nodes. They differ from general mechanisms of
Remote Procedure Call (RPC) because this computes locally
on the given parameters, returning the result. Active Messages
handlers execute immediately upon message arrival. This
allows overlapping between local processing and application-
level communication.

In TinyOS, each Active Message packet contains 36 bytes
effectively transmitted with the following distribution: 2 for
destination address, 1 for handler identifier, 1 for group
handle, 1 for length, 29 for data payload and 2 for cyclic
redundancy check (CRC).

2.5. Study conclusion

The present functionalities in an OS for WSNs depend on the
application being considered. TinyOS is not designed for all
applications in WSNs. Here we list some of its deficiencies:

• Lack of code mobility support: applications can’t be
distributed dynamically over the network.

• Explicit negotiation for data and resources: for node
cooperation, the nodes must program events to be signaled at
message reception.

• No kernel/user memory separation: there is not memory
protection mechanism, allowing that a bad coded application
overwrites system kernel memory.

In the next section, we describe our new approach.

3. PROPOSED WORK

Our microkernel for nodes in WSNs, currently in development
stage, is being implemented in C language. This decision was
taken in order to grant more portability across different
microcontrollers, not depending on a specific architecture.

We analyzed different OSs for nodes in WSNs and
embedded devices, such as: TinyOS, Bertha, SensorWare and
Eyes. This allowed us to identify their eligible features and
concepts, which constitute the base for the new microkernel in
development. In next subsections, they are related along with
their purposes.

3.1. Event-driven data delivery model

WSNs can be divided in 4 delivery models: continuous, event-
driven, observer-initiated and hybrid [6]. In continuous type,
the sensors will report their readings at determined rate. In
event-driven, sensors will inform to the application when
certain events occur. In observer-initiated, sensors will reply to
a request from applications. At last, in hybrid, the later
approaches can be present at the same time.

Due to the reactive behavior of the most of applications in
WSNs, the event-driven model was the chosen to integrate the
new microkernel. It is the most attractive because the energy

expenses of this model are low, when compared to the other
cited approaches.

3.2. Code mobility support

Transmission in WSNs is the process that consumes the most
energy, being a good practice to minimize code mobility.
However, this functionality should be supported because it
allows to dynamically deploying different algorithms over the
network. In addition, the nodes themselves can be
programmed automatically, from a “programmer” node.

3.3. Application program interfaces separation

Nodes memory in WSNs is a very scarce resource. So it must
be used parsimoniously. Some OS functionalities must be
available all the time, but there are others that are application-
specific. Separating these functionalities in distinct application
program interfaces (API) and installing them in the nodes in a
need-to-use base, the memory will be used most efficiently.
For example, if a node will only read temperature, it is
unnecessary and wasteful to load the movement sensing API,
too. The objective of this approach is clear: load in a node only
the needed functionality in order to save memory.

3.4. Operation on constrained resources

Nodes in WSNs possess storing, processing, communication
and sensing capability, but they are very limited. The
microkernel must consider this fact, in order to attend the
specific requirements of these nodes and their WSNs. The
identified demands to be attended are: low energy
consumption, small computing power, fault-tolerance and self-
configuration.

ACKNOWLEDGEMENTS

This work is partially supported by CNPq.

REFERENCES

[1] A. A. F. Loureiro, J. M. S. Nogueira, L. B. Ruiz, R. A. F.
Mini, “Redes de Sensores sem Fio”, Curso da XXI Jornada de
Atualização em Informática – XXII Congresso da SBC,
Florianópolis, 2002.

[2] SensorNet project: http://esperanca.sis.dcc.ufmg.br/

[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, K. S.
J. Pister, “System Architecture Directions for Networked
Sensors”, Architectural Support for Programming Languages
and Operating Systems, pp. 93-104, 2000.

[4] A. Cerpa, J. Elson, M. Hamilton, J. Zhao, D. Estrin, L.
Girod, “Habitat Monitoring: Application Driver for Wireless
Communication Technology”, Workshop on Data
Communication in Latin America and the Caribbean, ACM
Press, pp. 20-41, 2001.

[5] D. Gay, P. Levis, R. Behren, “The nesC Language: A
Holistic Approach to Network Embedded Systems”, to appear
in ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, 2003.

[6] S. Tilak, N. B. Abu-Ghazaleh, W. Heinzelman, “A
Taxonomy of Wireless Micro-Sensor Network Models”,
Mobile Computing and Communications Review, 2002.

