
����������	
��	��������	�����	�������	

���������	��
�������1������������
�����1��������������
�����1�
���������������������1��
��������������������1�	����������������� �2������������!�����"#����1�

�
1Departamento de Ciência da Computação, Universidade Federal de Minas Gerais

2Departamento de Engenharia Elétrica, Universidade Federal de Minas Gerais
Avenida Antônio Carlos, 6627, Belo Horizonte, Minas Gerais – Brasil

{vitorino, lfvieira, mmvieira, makish, otavio, coelho}@dcc.ufmg.br, diogenes@ufmg.br

��������	
�

Wireless Sensor Networks operate with hundreds or thou-
sands of tiny embedded computers, which have restricted
power, energy, and computation capabilities and communicate
over wireless means. As these networks enable several applica-
tions, the programmers need an easy and clear way to develop
over these sensor nodes. Our work proposes a middleware that
will reach this objective.

The middleware is a software layer that sits between the op-
erating system and applications. It will meet many requirements
of wireless sensor networks, and also incorporate energy-
efficiency policies in every of its features. Some of them are
local communication, code mobility, event-driven operation,
and a high-level programming language. Project decisions had
been taken analyzing recent studies on this area.

��	����������	

Tiny embedded devices compose wireless sensor networks
(WSN). These devices can communicate with each other by
wireless means (radio, infrared, etc.), and have memory, energy
and computational power restrictions, due to its limited size.
They should work autonomously, collecting useful data from
the environment with specialized sensors. This information will
be routed to a common gateway, a more powerful computer
device.

Some interesting applications arise from these devices,
therefore referred as sensor nodes, such as natural environment
surveillance, dangerous substance detection, and traffic moni-
toring. Their purpose cannot be implemented simply by collect-
ing and forwarding data to the gateway, but with distributed
algorithms. Sensor nodes have to cooperate with each other in
order to achieve the correct result.

These applications were hard-coded in assembly or have the
support of an operating system, such as TinyOS[1]. Program-
mers need an easier and clear way to develop those applications,
disrespecting the individual characteristics of the nodes. A mid-
dleware for WSN would surely fill this objective.

A middleware is a software layer between the operating sys-
tem and the applications, which disciplines the development
and introduces abstractions that greatly improve the application
construction. Our goal is to build a middleware that incorpo-
rates the best practices for programming WSN.

Our work is part of SensorNet project, which will study ar-
chitecture, protocols, management and applications for WSN.

The rest of this paper is organized as follows. Section 2 dis-
cusses the latest approaches on middlewares for WSN. Section
3 presents the requirements met by our work. Section 4 shows
the proposed architecture, and Section 5 describes our project
status and next steps.

��	�������	����	

The needs for a middleware for this kind of embedded system
are well known. Although their characteristics can be clearly
identified, the exact architecture to cover all the requirements is
an open research[2].

Maté[3] builds a virtual machine above TinyOS, and pro-
vides code mobility at a low transmission cost. Besides, the
programming model states that all operations are done on
stacks, similar to Java bytecodes[4], so it also offers memory
protection. It was designed to hide synchrony problems associ-
ated to nesC language[5], and offer a better way to program the
sensor nodes. All these achievements are explained by dealing
with scripts rather than binary code.

Although the scripts impose an energy overhead in their exe-
cution due to translation, they make harder security checks and
smaller code size possible, comparing to pure binary executa-
bles. Sensorware[6] uses the same idea, but with the Tcl
core[7]. This work, however, does not meet our restricted mem-
ory requirements. It was developed to iPAQ 3670 architecture,
which is far beyond the state-of-art nodes, such as mica
motes[3].

Another approach is to write one program that will be cor-
rectly compiled and distributed to our sensor nodes, before
deployment. This was done in c@t language[8], which deploys
a way to aggregate similar functions of the sensor nodes in a
logical manner. In this way, sensors interact with each other and
are addressed as groups, which is very reasonable.

One could consider the network as a distributed database,
and so create SQL-like statements to query this network. Pro-
jects like DSWare[9], TinyDB[10], and Cougar[11] chose that
view. It facilitates data collection and evaluation, as SQL is very
easy to understand. Statements include event identification,
detection rate, duration of the query, and region specification.
Those middlewares’ challenges reside on detecting energy-
efficient paths to satisfy the queries and how the network ac-
complishes these queries. Even the former characteristic can be
changed to support real-time constrains.

The problem of a database-like view of the WSN is restrict-
ing the number of applications that can be deployed. General
processing offers more flexibility, so that a programmer can
define complex interactions between nodes in order to solve
more elaborated problems like target detection.

��	��	����������	�����������	

	
It is important to focus our middleware in some aspects, in or-
der to solve them effectively. One of the most important project
decisions is the supported class of applications. Here, we chose
to ease the implementation of distributed algorithms on WSNs.
This leads to an environment where programmers have to write

a code that will be executed on the whole network. This idea is
reasonable, as the applications need that nodes cooperate with
each other in order to achieve the desired result. At the same
time, we are enabling a myriad of applications to be deployed,
from simple data collection to complex routing algorithms. This
approach considers that localization and node’s architecture is
not known at development time.

To achieve the necessary interaction between nodes, we as-
sume that one node can only communicate with its neighbors.
This is reasonable since the energy cost of transmitting some
data is usually the square of the distance between nodes. Be-
yond that, local communication is robust, scales well over the
network, and does not limit the range of applications. These
properties are inherent to localized algorithms, which is the
focus of our middleware.

Other available feature will be code mobility. While the de-
cision of transmitting the code through the network has an en-
ergy overhead, it is a necessity. First, some applications don’t
know a priori its parameters, like sensor reading frequency.
Even if they were known, the users would like to change this
parameter, according to current results. Another important use
of code mobility is the ability to install new programs after net-
work establishment. At any time, one node could be introduced
just to forward the new code to its neighbors, which would
reach all the network by broadcast. Revised applications could
also replace old ones.

The middleware will support an event-driven programming.
Most of applications will perform some computation just over
some sensor value thresholds, and remain idle the rest of the
time, when the sensor nodes can be put in “sleep” mode which
saves energy. The middleware will allow programmers to exe-
cute computations in response to detected events. The set of
events available will be customizable. Some kinds of events are
timers, reception of messages, a specific sensor reading, etc.

��	��	����������	������������	

The requirements described above define the middleware archi-
tecture that will support them. The proposed architecture is
organized as follows:

• �������	 � !"#$�%#�&	 ��&�� � &% – programs that
request their replication to other nodes call a simple command,
like replicate. This command will invoke the program replica-
tion management, that wraps the program code into a special
message and send it over the network. That message also in-
cludes the program identification and version. When this mes-
sage arrives at the receiver node, the program replication man-
agement handles this message and installs the program, if it is
not already on the sensor node, or overwrites an older version.
If there is no more memory available for programs, it will sim-
ply discard the message and advertise this decision to the sender
node. One could also execute another command to uninstall a
certain program from the network.

• ��$�"	$���'&#$�%#�& – the middleware will be able
to negotiate and maintain a unique address to each neighbor of a
given node. That will be useful to implement routing algorithms
and target tracking algorithms, for example.

• �(&%) % $%#�&	– every node, on its deployment, will
register all the available devices with a unique name, imple-
menting some pre-defined set of operations that are fixed for
any of these devices. Our middleware will maintain these names
and associate the call of these operations to their specific im-
plementation. This approach will exhibit a uniform access for
any device, while not restricting the number and types of de-
vices available at each node.

Another concern of our middleware is to present a high-
level language that will enable concepts like event-driven exe-
cution. We should use a subset of C, which is a common lan-
guage for programming embedded devices and generates effi-
cient binary code.

	
*�	���+���	������	

We initially studied the state-of-art technologies on middle-
wares and WSN and identified the main requirements that our
software will fulfill. With this information in mind, we were
able to delimit an architecture that will provide many features
and still respect several constrains of the sensor nodes, includ-
ing restricted memory and energy resources.

Now, we will consider the design issues of our architecture
and, after that, we will implement and test the middleware for
the sensor node that is being developed in SensorNet project.

��������,�����	

This work is partially supported by CNPq.

��
������	

[1] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and
K. S. J. Pister, “System Architecture Directions for Networked
Sensors”, $�� %����� �&� ���'���������� ��((���� &��� %�����������
���������������(���������)�����, pp. 93-104, 2000.
[2] K. Römer, O. Kasten, and F. Mattern, “Middleware Chal-
lenges for Wireless Sensor Networks”, �����$*���$�+���,
-�������(�������������������������.� ��/, pp. 59-61, Octo-
ber 2002.
[3] P. Levis and D. Culler, “Maté: A tiny virtual machine for
sensor networks”, 0�� �((���� ��� $������������� ���&������� ���
���'������������((���� &���%��������������������������(��,
�������)�����, October 2002.
[4] T. Lindholm and F. Yellin, 0'�� "� ��
������� ���'����
�(���&�������, Addison-Wesley, 1999.
[5] D. Culler, D. Gay, P. Levis, R. von Behren, M. Welsh, and
E. Brewer, “The nesC Language: A Holistic Approach to Net-
worked Embedded Systems”, $�� %����� �&� ���&������� ��� %��,
��������� ��������� 	������ ���� $�(������������ �&� ����
�$*%��!�1223, 2003.
[6] A. Boulis and M. B. Srivastava, “A Framework for Effi-
cient and Programmable Sensor Networks”, $�� %����� �&�
�%+!�.�4�1221, June 2002.
[7] J. K. Ousterhout, “Scripting Higher-Level Programming
for the 21st Century”, ���(�����"������, pp. 23-30, 1998.
[8] D. P. Seetharamakrishnan, “c@t: A Language for Pro-
gramming Massively Distributed Embedded System”, 5�(�-,
���'�����������0'��������������'�������$����������&�0��'�����),
September 2002.
[9] S. Li, S. H. Son, and J. A. Stankovic, “Event Detection
Services Using Data Service Middleware in Distributed Sensor
Networks”, ������6�� (��7���� ��� 5�� �����)� �&�
�������, May
2003.
[10] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W.
Hong, “The Design of an Acquisitional Query Processor for
Sensor Networks”, 0���((���� ��������$*��	�.�����, June
2003.
[11] Y. Yao, J. Gehrke, “The cougar approach to in-network
query processing in sensor networks”, �����$*��	�.�����,
pp. 9-18, 2002. September 2002.

