
DEDICATED INSTRUCTIONS TO SUPPORT MULTIPROCESSING
ON A EMBEDDED JAVA ARCHITECTURE

L.S.Rosa Jr., A.C.Beck Fo., F.R.Wagner, L.Carro, A.S.Carissimi, A.I.Reis

Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
PO Box 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{leomarjr, caco, flavio, carro, asc, andreis}@inf.ufrgs.br

ABSTRACT

This work presents a new instruction set to support the
design of schedulers for an embedded Java architecture
with reduced area cost. Obtained results for a Round-
Robin scheduler, which uses these new instructions to
execute the context switch, are presented. Experiments
show the impact of schedulers using the instruction set
and on the embedded system performance.

1. INTRODUCTION

Embedded operating systems became a key element
used in many systems essential to modern life. They are
found in all kinds of devices and systems, from high-end
routers and switches that keep networks running, to
medical devices that keep patients alive, as well as
copiers, TV remote controls, factory-automation systems,
and even talking dolls [1].

Almost every new system that performs different tasks
automatically has an embedded operating system
orchestrating the performance of its components [2]. The
processor use is managed by a routine of the operating
system called scheduler. A scheduler is needed when a
single processor must handle different tasks [3].

The goal of this paper is to present a multiprocessing
alternative for an architecture that cannot execute two or
more processes simultaneously. Thus, new instructions to
support context switching were developed, leading to
good results.

This paper is organized as follows. Section 2 details
the processor architecture, while the implemented
instructions are discussed in section 3. The evaluation and
conclusions are presented in section 4 and 5, respectively.

2. THE EMBEDDED ARCHITECTURE

Efficient execution of Java programs, especially in
embedded systems, can be done by direct execution of
Java bytecodes in hardware [4]. This is the main
characteristic and intention of the FemtoJava
microcontroller.

This processor was designed to application in
embedded systems with low power characteristics, and its

synthesis is targeted for FPGA devices [5]. Other
characteristics of this architecture are: reduced area,
reduced instruction count and the capacity to add or
remove instructions in its VHDL code.

The FemtoJava architecture is a stack-based machine,
and therefore, it does not support multiprocesses. Figure 1
presents the FemtoJava micro architecture

3. INSTRUCTIONS FOR CONTEXT SWITCHING

The scheduler is a basic element for the embedded
operating system. If an equipment needs to simultaneously
execute more than an application on the same CPU, then
the scheduler becomes a part of extreme value for the
computer system. Thus, we can implement the virtual
CPU concept, where a CPU manages the execution of
some processes.

M
U

X
M

U
X

M
U

X
M

U
X

A
LU

+/-

+

PC

0

1

A

IMM

Const

SP

FRM

VAR

A

B

IR

Control

D
 a

 t
a

 B
 u

 s

D
 a

 t
a

 M
 e

 m

A
 d

 d
 r

 e
 s

 s

B
 u

 s

I n
 t

r u
 c

 t
i o

 n

B
u

s

P
 r

 g

M
 e

 m

A
 d

 d
 r

 e
 s

 s

B
 u

 s

RAM

R O M

Input
Ports

Output
Ports

Timer

Interrupt
Handler

MAR

Figure 1. The FemtoJava Micro Architecture

In order to implement a scheduler, hardware support is
needed. The original version of the FemtoJava
microcontroller does not have instructions dedicated to

process scheduling and context switching. New extended
instructions have been created for this, adding to the set of
extended bytecodes to those already existing in the
architecture.

The first extended instruction created was the
INIT_CTX. This new instruction has the purpose to store
the stack pointer value of the processes in a private
memory position. These values allow the scheduler to
restore the correct information from the registers, allowing
the process to be executed correctly.

The second extended instruction, called INIT_STK, is
the responsible instruction for the creation of a stack for
each new process in the specified memory positions.

The third instruction was called REST_CTX. This
instruction has the purpose to restore the process stack
pointer from the position where it was stored.

The fourth extended bytecode, called SAVE_CTX,
saves the current process stack pointer before being
selected and placed in the queue.

Finally, the fifth instruction, called SCHED_THR, is
responsible for the scheduling policy.

Table 1 presents the new developed instructions and
the µinstructions number for each one of them.

Table 1. New Instruction Set

Instruction Bytecode µµInstruction number
INIT_CTX F4 7
INIT_STK F5 7

REST_CTX F6 10
SAVE_CTX F7 6

SCHED_THR F8 11

The set of these five new instructions allowed the
scheduler development, making possible the context
storage and the allocation of the processor for the
competitive processes.

4. EVALUATION

To evaluate and validate the new developed
instructions, a Round-Robin scheduler was implemented.
Two different sort algorithms were used as application to
be processed concurrently on the FemtoJava
microcontroller. The Bubble Sort and Select Sort
algorithms have been used to sort distinct vectors of ten
elements. The software Altera Max+Plus II v10.1 and the
CACO-PS simulator tool [6] was used to evaluation. The
CACO-PS is a code-compiled simulator, based on clock
cycle execution that calculates the consumed power in
each architectural component (registers, multiplexors, and
others). In accordance with the switch activity of these
components, the tool informs the dynamic power
consumption in switched gates (SGs). Table 2 presents the
results of the scheduler impact, using the new instructions,
on the embedded system.

Table 2. Scheduler Impact on the Embedded System

Values
Needed cycles number 128 cycles
Power consumption 719.723 SGs
ROM overhead 96 bytes
RAM overhead 3 bytes
FPGA overhead 106 logic cells

Table 3 presents the overhead of execution time,
number of cycles and power consumption for the Round-
Robin scheduler.

Table 3. Scheduler Overhead

Algorithm Execution
total time

Executed
total cycles SGs

Bubble +
Select 2.243ms 12.081 64.937.719

Bubble +
Select +
Scheduler

2.743ms 16.625 89.807.282

5. CONCLUSION

A instruction set was extended to support context
switching was implemented on a java microcontroller and
their costs were discussed. As expected, the Round-Robin
scheduler introduces a smaller overhead on the embedded
system. Future works will analyze the impact of different
scheduling policies and will be used to create an
automatic tool to synthesize embedded schedulers
according to particular system requirements.

6. ACKNOWLEDGEMENTS

The authors would like to thank the support provided
by CNPq, FAPERGS and PROPESQ-UFRGS.

7. REFERENCES
[1] Ortiz, S. Jr. Embedded OSs Gain the Inside Track. IEEE Computer,
vol. 34, n. 11, pag. 14-16. 2001.
[2] Schlett, M. Trends in Embedded-Microprocessor Design, IEEE
Computer, vol. 31, n. 8, pag. 44–49. 1998.
[3] Silverschatz, A.; Galvin, P.; Gagne, G. Applied Operating System
Concepts. First Edition. Wiley. 2000.
[4] Kreuzinger, J.; Et al. Real-time event-handling and scheduling on a
multithreaded Java microcontroller, Microprocessors and Microsystems,
vol. 27, pag. 19-31. 2003.
[5] Ito, S. Et al. System Design Based on Single Language and Single-
Chip Java ASIP Microcontroller”, Design Automation and Test in
Europe, pag. 703-707, Paris, France. IEEE Computer Society Press.
2002.
[6] Beck, A. C. Fo. CACO-PS: A General Purpose Cycle-accurate
Compiled-code Power Simulator. 15th Symposium on Integrated
Circuits and System Design. 2003.

