
OPTIMIZATION OF THE MOVE ARCHITECTURE APPLIED TO DSP UTILIZING BIT-
SERIAL MULTIPLIERS

Igor Gavazzi Vazzoler
Departamento de Engenharia Elétrica

Universidade Federal de Santa Catarina
CEP 88040-900 Florianópolis – SC – Brasil

igorgv@grad.ufsc.br

Luigi Carro
Departamento de Engenharia Elétrica
Universidade Federal do Rio Grande do Sul
CEP 90035-190 Porto Alegre – RS – Brasil
carro@iee.ufrgs.br

ABSTRACT

This work presents the results of a research about the
optimization of a single instruction processor (MOVE)
applied to DSP. The intended optimization goes both in
the way of the occupied area as in the way of processor’s
performance. The theory is that such optimization can be
reached through utilization of bit-serial multipliers
working in parallel. The efficiency of the implemented
architecture is measured through a simulation of a digital
signal filter. The results of this simulation and the
technical results of the realized implementation were
compared to the results of a previous work about the
MOVE architecture that hasn’t the bit-serial multipliers.
The description of the architecture was developed in
VHDL and the synthesizing in FPGA.

1. INTRODUCTION

As important as developing a system that performs a
given task is to develop a low-cost and performance-
optimized system to perform that task. In digital signal
processing, one of the choices to decrease the cost was
presented in [1]. Such work showed the possibility of the
implementation of digital signal processors based on the
MOVE architecture, which have particular features such
as simplicity and flexibility. A MOVE architecture
processor is a processor that executes only one
instruction, move, which copies a data from one memory
position to another. The simplicity of this processors
results from the fact that its logic is trivial in comparison
with the general purpose processor’s logic or even with
the DSP processor’s logic. The MOVE architecture’s
flexibility results from its high reconfigurability. In this
architecture, all the operators are mapped in memory
positions and this mapping can be freely changed without
producing any direct change in the processor’s structure,
but just in its programming mode. This way, the system
can be adapted to the kind of application where it will be
used, and the processor itself stands the same, executing
only moves.

This work is organized as follows: section 2 presents
the proposed idea to obtain the intended optimization.
Section 3 presents the reasoning used to find an equation
that gives the great number of bit-serial multipliers to use
in the data path. The sections 4 and 5 describes the
implementation and the simulation realized to prove that
the idea was correct, while the section 6 exposes the
results obtained with such practical development. The
conclusions and suggests for continuity of this work are in
section 7.

2. THE UNDERLYING IDEA TO REACH
OPTIMIZATION

The proposed choice in this work to obtain a better
performance is to replace the multiplier utilized primarily
by a group of bit-serial multipliers working one in parallel
with the others. The parallel multiplier utilized in the
previous work doesn’t depend on clock synchronization
to operate and have a relatively small response time, but
greater than the memory response time. The bit-serial
multipliers depend on clock synchronization to operate
and spend several cycles to give a valid response, but
each processing step requires a time much smaller than
the parallel response times. This way, the entire system
can run with a higher frequency. Besides, the bit-serial
multiplier occupies an area usually 5 times smaller than
the area occupied by the parallel multiplier. This results
in resources economy.

In the specific case of using the MOVE architecture
applied to DSP, there is need of arithmetic operators in
the data path. This fact occurs because the DSP
algorithms perform many mathematical operations. The
research presented in [1] showed an implementation
which had one adder, one subtracter and one parallel
multiplier. In that case, the system has its frequency
limited by the parallel multiplier within the data path.

3. THE OPTIMUM NUMBER OF MULTIPLIERS

The optimum number of multipliers to add into the
data path depends on the architecture's word size. To
obtain the best multipliers utilization rate, the developed
program must obey to two criteria:
· Read the multiplication's result just after its finish: in

order to avoid letting the multiplier inactive, the
developed program must read its result as fast as
possible after the cycle when this becomes available.

· Make an efficient use of the cycles which precedes the
reading of a multiplication result: the instructions
between the MOVE instruction which started and read
the result must be utilized to start multiplications in
the other multipliers.
It is necessary to obtain an equation that gives this

optimum number of multipliers to be placed in the data
path. That number must fulfill the two affirmations, so the
following reasoning was done: to start a multiplication,
two MOVE instructions are needed, one to move the first
operand and other to move the second operand to its
respective memory positions (the multiplier's inputs).
Therefore, four clock cycles are needed to start a

multiplication, since each MOVE instruction takes two
cycles to be realized. The number of cycles that the
multiplier spends to give a valid result in its output is
equal to its word size (p). So, in this time is possible to
realize p/2 MOVE instructions. With this number of
multiplications is possible to start (p/2)/2 or p/4
multipliers. Adding this number with the multiplier which
was initially initialized, it is obtained:

Nm = (p / 4) + 1 (1)

Where “Nm” is the optimum number of multipliers to
instantiate into the data path and “p” is the word size or
the number of bits that the multipliers work with.

In the case of the implemented MOVE architecture,
where p is equals to 8, Nm is:

Nm = (8/4)+1 = 3

4. IMPLEMENTATION

The development tool utilized in the implementation
was the Altera's MAX-PLUS II. This software has a wide
library of parameterized functions that were utilized in the
data path and in the bit-serial multiplier, just as shift-
registers, adders and RAM blocks. In the previous work,
the utilized multiplier was from this library, but in the
current work the multiplier was developed specially to the
implementation.

5. SIMULATION

One aspect of the intended optimization in this work is
relative to its performance. To measure the new
architecture's performance and make comparisons with
the previous results, were utilized a program developed in
the previous work, but adapted to the new programming
mode. The program is a FIR filter of 10 coefficients. As
in the previous work, the architecture was built with a
word size equals to 8 bits, therefore, some
approximations were made in order to make possible the
architecture's performance analysis.

The simulation was done by the simulator of Altera's
MAX-PLUS II, and the results were caught through an
analysis of the resulting waveform.

6. RESULTS AND COMPARISONS

The table 6.1 presents the technical results of the
developed implementation and compares these values
with the values obtained in the previous work. These data
are relative to the OPERAT block, which contains the bit-
serial multipliers.

Previous work Current Work
Logic Cells 412 298
Utilized Area 35% 25%
Maximum Frequency 9.14 MHz 20.79 MHz
Number of Multipliers 1 3
Multiplier's response time 69 ns 384 ns

Table 6.1 – Technical comparisons between the two
realized works

The table 6.1 shows that in relation to the inherent
architecture's cost, the underlying idea was correct. This
is evidenced by the reduction of the utilized area. The
current work reached a reduction of 27.7%.

The table 6.2 presents the results obtained with the
simulation of the FIR digital signal filter in both works.

Previous work Current work
Number of instructions 90 90
Number of cycles 180 180
Clock Period 109.4 ns 48.1 ns
Filter's response time 19.69 us 8.65 us
Sample Rate 50.78 KHz 115.61 KHz

Table 6.2 – Performance comparisons

The information in the table 6.2 points to success in
the assumption of performance optimization. Despite the
bit-serial multiplier be much slower than the parallel
multiplier, the group of bit-serial multipliers made the
global result better. In this case the optimization is
measured through the increase of the filter's sample rate
simulated. The new sample rate is 127.7% faster than in
the previous implementation.

7. CONCLUSIONS AND FUTURE WORKS

This work reached its goal and showed that the
utilization of bit-serial multipliers working one in parallel
with the other can increase significantly the MOVE
architecture's performance when it's applied to DSP. The
work showed a utilized area reduction too, causing a cost
decreasing.

An interesting suggestion for continuity of this work is
the development of a compiler specific to the MOVE
architecture. This compiler would be designed to be a
DSP specific compiler or even a high level language, such
as C. This way, generic programs would be designed and
executed with the MOVE processor, and its performance
as a generic purpose processor could be analyzed.

REFERENCES

[1] J. C. B. de Mattos, D. T. Franco, L. Carro, and A. A. Suzim,
“MOVE Architecture applied to DSP”

[2] E. E. Fabris, G. A. Hoffmann, A. A. Susim, and L. Carro,
“A bit-serial FFT processor”

[3] P. J. Ashenden, The Student's Guide to VHDL, Morgan
Kaufmann Publishers, San Francisco - USA, 1998.

[4] De Micheli, G., Synthesis and Optimization of Digital
Circuits, MacGraw-Hill, USA, 1994.

[5] S. W. Smith, The Scientist and Engineer’s Guide to Digital
Signal Processing, California Technical Publishing, San Diego
- USA, 1999.

 [6] Altera Corporation, Data Book. San Jose: Altera
Corporation, 1996.

