
Evaluating the Cost of Object Oriented Software in Embedded System
Applications

Emilena Specht
emilenas@inf.ufrgs.br

Júlio de Mattos
julius@inf.ufrgs.br

Luigi Carro
carro@inf.ufrgs.br

Instituto de Informática - Departamento de Engenharia Elétrica - UFRGS

Abstract

By the use of popular programming languages such
as Java and C++, nowadays embedded systems can
be developed in a very short time, by the reuse of
legacy code. However, developers should be free to
use any object oriented coding style and the whole
package of advantages that these languages usually
provide. However, one must also deal with the limited
resources of an embedded system - small amount of
memory and low power processor.

This article studies the cost of dynamic object
allocation, compared with the availability of common
embedded systems resources. The analysis includes
information about the memory used and an estimation
of time consumed when objects are created in typical
applications. Results show that an overhead ranging
from 10 to 50% can be found in different meaningful
applications like text editors, graphic programs and
MP3 players. This overhead is also related to the cost
of the memory allocation procedure.

1. Introduction

Embedded systems are not only required to provide

solutions only for simple cases as they used to.
Nowadays, with the growing complexity of portable
equipment like cell phones, games and MP3 players,
developers have to care about memory, time and
power, finding solutions that guarantee the correct
response of a real-time system without significant
extra cost. Object oriented paradigm may satisfy the
software portability and maintainability requirements,
but its impact on the other attributes involved must be
considered.

In this work, we analyze some Java Object-
Oriented applications that may run on embedded
systems. The goal is to characterize the exact amount
of overhead one has to pay to effectively use the OO
paradigm.

2. Object-Oriented Applications Analysis

Some of these applications used as benchmarks

are common in portable devices, although they were
profiled in j2sdk1.4.0 environment: MP3Player [1],
DCT (algorithm that implements the Discrete Cosine
Transform) [2,3], Address Book [4], Notepad (text
editor) [5], DrawTest (allows drawing in a box) [5],
SymbolTest (displays Unicode char ranges) [5].

It is important to mention that none of the above
applications has been code by one of the authors. We
made a blind analysis, in order to avoid influence on a
particular code style.

The Bytecode Instrumentation Tool (BIT) [6]
provided a first view of oriented object paradigm
presence in the benchmarks. A class that imports BIT
packages divides the application classes in blocks of
bytecodes and identifies instructions, counting them as
they appear in the source code of each application.

BIT deals with classes of instructions. Comparing
instructions types on each application gives an idea of
their features. On the other hand, a dynamic analysis is
fundamental: it traces an application execution in
order to count method calls and instructions in real-
time. For this reason, BIT classes also have methods
which are called along a class execution, allowing a
measurement of memory allocated besides the
instructions counting. Table 1 shows the percentage of
allocation instructions on the source code and on total
executed. As seen in the table, memory related
instructions are responsible for a small percentage of
the total dynamic instruction count. However, each
time the memory allocation procedure is called, a large
number of microinstructions might be called, thank to
the complex memory model adopted in Java.

 BIT was indirectly used to count the size of
memory occupied by the application thread as the
instructions were executed. At some instant, a
maximum size was reached and this number is taken
as the amount of memory needed to execute that
application. However, this number depends on the

specific garbage collection implementation of that
virtual machine.

Another tool, Jprofiler [7], was used to count the
memory occupied by live and garbage collected
objects. This represents the amount of memory that
would be used without the garbage collector action.
Table 1 shows memory occupation statistics calculated
on tools information.

Table 1. Percentage of object instructions on total
and memory occupation

Allocation instructions Application
Static Dynamic

Memory
occupation

MP3 7.2% <0.01% 66.34%
DCT 10.6% 0.03% 17.09%

AddBook 15.7% 5.0% 17.65%
Notepad 13.3% 1.0% 41.54%
DrawTest 14.9% 1.9% 19.74%
SymbTest 12.0% 0.04% 26.38%

3. Results

In cases such as Notepad, SymbolTest and

DrawTest - the amount of instructions manipulating
objects is larger after the start-up phase, while memory
occupation remains almost constant during the
execution of the whole application. This happens
because the major structures are allocated once and
stay active until the end of execution. Although there
is a very small number of allocation instructions in
DCT and SymbolTest, these applications demand a
large memory usage. The MP3Player was analysed
when playing a music with more than 3 minutes. This
caused, in the beginning of execution, the creation of
objects for the MP3 standard decoding process. After
that, the audio decoding was just changing values from
already allocated objects. The AddressBook
application takes the information that is wanted to be
stored from a simple file and place it in a dynamic
hash table. This means that the memory occupation is
directly linked with the table number of entries.

Considering that regular instructions take one cycle
to be executed, in a pipeline machine like femtoJava
[8], the plot in figure 1 shows statistics about the
overhead that might be expected by dynamic
allocation.

As it can be seen form figure 1, for some
application the memory allocation needed to support
the OO paradigm can represent more than 50% of the
total cycle cost, indicating that the CPU spends more
time and energy just managing memory, instead of
actually executing the target application.

Figure 1. Overhead caused by allocation

4. Conclusions and Future work

As the overhead depends on the number of

allocation instructions, it also depends on the
application features, the kind of data it manipulates
and its use of memory – what takes an allocation
instruction more or less expensive. There are cases
that an application performance is still better using
only static instructions.

The future work includes building a tool able to
analyze an application and determine the best way to
implement it in an embedded system with specified
resources.

References

[1] Javalayer. Java MP3 Player. Available at

http://www.javazoom.net/javalayer/sources.html(2004).
[2] Salomon, David. Data Compression: the complete

reference. New York:Springer, 2000.
[3] Agostini, L et al. Pipeline fast 2-D DCT architecture for

image compression. Symposium on Integrated Circuits
and Systems Design, Pirenopolis, IEEE Computer
Society, 2001, p.226-231.

[4] Brenneman, Todd R. Java Address Book (ver. 1.1.1).
Available at www.geocities.com/SiliconValley/2272.

[5] J2SDK1.4.0 demo applications. Available at
http://java.sun.com (2004).

[6] Lee, Han Bok; Zorn, Benjamin G. BIT: A Tool for
Instrumenting Java Bytecodes. USENIX Symposium
on Internet Technologies and Systems, Monterey,
California, USENIX Association, 1997. p.73-82.

[7] EJ-TECHNOLOGIES. Jprofiler 3.0.1. Available at
http://www.jprofiler.com (2004).

[8] Ito, Sérgio; Carro, Luigi; Jacobi, Ricardo. Designing a
JAVA Microcontroller to Specific Applications. XII
Brazilian Symposium on Integrated Circuits and
Systems Design, IEEE Computer Society, 1999, p.12

