
VLIW Implementation of a Multiprocessor
Reconfigurable Architecture

Arnaldo Azevedo1, Rodrigo Soares2, Ivan Saraiva Silva2, Flavio Wagner1, Sérgio Bampi1

1Universidade Federal do Rio Grande do Sul 2Universidade Federal do Rio Grande do Norte
 Instituto de Informática Departamento de Informática e

Matemática Aplicada

apafilho@inf.ufrgs.br; rodrigo@lcc.ufrn.br; ivan@dimap.ufrn.br; {Flavio, bampi}@inf.ufrgs.br

Abstract

The X4CP32 is an architecture that combines both
Parallel and reconfigurable paradigms. It consists of
grid of Reconfigurable and Programming Unit (RPU),
responsible for all the processing and program flow.
This paper presents architectural modification in order
to maximize the computational use of the Cells in a
RPU. A change to a very large instruction word
(VLIW) philosophy in the RPU was implemented to
reach the objective. This changes raise the
Instructions per Cycle of the RPU from 0.5 to 1 with no
area overhead and no influence in clock frequency.

1. Introduction

The Reconfigurable Architectures’ [1, 2, 3]
importance is increasing, as it’s a good tradeoff
between ASICs performance and microprocessor’s
flexibility. ASICs are usually very efficient on
performing the tasks it was developed to, but are
incapable to perform any other application. In the other
hand, a microprocessor can perform virtually any task,
but that usually implies in a low performance. Between
these two extremes are the Reconfigurable
Architectures (RA), which try both to combine ASIC’s
and microprocessor’s advantages and overcome their
weaknesses.

The X4CP32 [4, 5, 6] is a reconfigurable
microprocessor that also uses the Parallel paradigm, to
obtain programmability uncommon to other RAs. The
parallel processing, along with the flexibility to
execute the most important part of a code systolically,
brings new horizons to the current system designing.

In order to accelerate the data processing by the
processor, this paper explores the design space of the

Reconfigurable and Programming Unit (RPU). To
utilize as much parallelism as possible, with the present
components, a very large instruction word (VLIW)
philosophy was implemented in the RPU.

The next section presents the architectural
modifications. Section 3 brings the results of the
implementation. The paper ends presenting the
conclusions, in Section 4, and the references in the
Section 5.

2. X4CP32 VLIW

The X4CP32 [4, 5, 6] architecture doesn’t achieve

its full potential. The RPU, when working in
Programming Execution Mode, leaves for the top left
Cell the responsibility to distribute the instructions to
others Cells in the same RPU. This task takes
operational cycles from the Cell, which can’ t process
data while doing the distribution. Other weak point is
that distributing an instruction to another Cell takes 2
clock cycles. Since the Cells take 4 cycles to execute
an instruction, except multiplication, that takes 6
cycles, the top left Cell can only send instructions to
other 2 Cells, to keep them totally busy. This means
that from the 4 Cells available to compute, only 2, or 3
when all of them are multiplying, can really be used to
process data at the same time. To solve this problem
we propose a VLIW implementation of the RPU.

VLIW describes an instruction-set philosophy in
which the compiler packs a number of simple, non-
interdependent operations into the same instruction
word. When fetched from cache or memory into the
processor, these words are easily broken up and the
operations dispatched to independent execution units.

In the original design of RPU, each instruction has
the information of in which Cell it will be executed.
The top left Cell, where the Instruction-Memory lays,

verifies this field and sends the instruction to the
destined Cell, or executes it if the instruction is
destined to itself.

This process doesn’ t exist in the VLIW
implementation. The control, in the VLIW version,
fetches the whole instruction word and verifies if the
Cells are ready to receive their instruction. If so the top
left Cell starts to execute its part of instruction while
sends the rest to the others Cells in RPU. If not, the
execution stalls and waits until all Cells are ready. So
the longest Cell instruction, in a VLIW instruction
word, defines the time taken to execute it.

The size of the VLIW word is 128 bits long. This is
the sum of the four 32-bit instructions of each Cell.
The VLIW word is formed by 4 Cell instructions. Each
group of 32 bits is destined to a different Cell. As each
Cell has an independent instruction, and keeps its total
functionality, a reduction of the VLIW word wasn’ t
possible.

The branch logic is placed in the top left Cell,
where is stored the Cell Level program. The
correspondent field for this Cell in the VLIW word is
the first one. The other instructions in the same VLIW
word are executed in parallel with the branch
evaluation. In others words, the instructions, in a same
VLIW word, are executed independently of the result
of the jump instruction in the top left Cell.

To implement the VLIW structure just small
changes were necessary. Once the Cells organization
are very close to a VLIW fashion, changes were done
in the top left Cell control logic and in its instruction
memory. The main difference is that now the control
waits until all Cells in the RPU are prepared to receive
to send the instructions.

No changes were implemented in the others Cells of
the RPU. The original mechanism of receiving and
synchronization of instructions suffered no changes.
The original organization of the RPU is very favorable
to a VLIW implementation, so this is a natural
evolution.

3. Results

 ������� ���
 shows the synthesis results for conventional

and VLIW architectures. The VHDL was synthesized
with Quartus II 4.0 from Altera. The results presented
are the same of the conventional implementation,
except for the memory bits that have increased in
24,576bits. Results refer a 1k positions G-MEM rather
the 64k of the architecture specification.

In the Programming Execution Mode the maximum
Instruction per Cycle (IPC) of the RPU raises from 0,5
to 1, since the four Cells can now process data in
parallel, avoiding the instruction distribution overhead.

	�
�� ��������������������� ���������� ���

Device EP2A15B724C7
Logic Elements 13,227

Total memory bits 73,728
Clock 53.7 Mhz

This means an increasing factor of 2 with no area

overhead and no influence in the clock frequency. This
change has no effect in the Reconfigurable Execution
Mode.

4. Conclusions and future works

This paper presented the modification of the RPU of
the XP4C32 processor to a very large instruction word,
VLIW, philosophy. The paper demonstrated the
methodology applied to increase the IPC of the RPU
using its already described structure.

The next step is the development of an assembler
that supports the VLIW implementation. Other work to
be done is an implementation of a pipeline in the data
path of the Cells.

5. References

[1] R. Harteinstein, “Reconfigurable Computing: the
Roadmap to a New Business Model – and its Impact on SoC
Design”, SBCCI Tutorial – 2001.

[2] Mirsky, E., DeHon, A., “Matrix: A Reconfigurable
Computing Architecture with Configurable Instruction
Distribution and Deployable Resources”, IEEE 1996.

[3] E. Waingold, M. Taylor, D. Srikishna, V.Sarkar, W. Lee,
V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S.
Amarasinghe, A/ Agarwal, “Baring It All to Software:Raw
Machines”, September -1997.

[4] Azevedo, A.; Soares, R.; SIlva, I. S.; A new hybrid
parallel/reconfigurable architecture: The X4CP32. Integrated
Circuits and Systems Design, 2003. SBCCI
2003. Proceedings. 16th Symposium on, Sept. 8-11, 2003,
Pp: 225-230.

[5] Soares, R.; Azevedo, A.; Silva, I.S.; “X4CP32: A New
Parallel/Reconfigurable General-Purpose Processor” ; 15th
Symposium on Computer Architecture and High
Performance, 2003.

[6] Soares, R.; Azevedo, A.; Silva, I.S.; “X4CP32: A Coarse
Grain General Purpose Reconfigurable Microprocessor” ;
Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, April 22-26, 2003 P. 171–178.

