
DATA-DRIVEN MAPPING ON A RECONFIGURABLE ARRAY

André Bigonha Toledo
Ricardo Santos Ferreira

Universidade Federal de Viçosa, Departamento de Informática
Viçosa, MG - Brasil - CEP 36570.000

(bigonha, cacau)@dpi.ufv.br

ABSTRACT

This work presents an approach for mapping a data-
driven algorithm onto a reconfigurable coarse-grain
array architecture. The mapping approach allows to
analyze different array topologies and interconnection
degrees. Moreover, an incremental input and output
format is specified in XML. A N-Tap FIR filter
benchmark, mapped onto on hexagonal and a grid
architectures, are used to validate our approach. The
results show a fast and flexible mapping to explore
different array architectures.

1. INTRODUCTION

A coarse-grained array processor is a regular
architecture which is based on set of interconnected
processing elements (PEs). These architectures can
provide a high parallelism, a low power consumption,
and a high circuit reliability and scalability, which are
the main drawbacks in superscalar/VLIW architectures.
Moreover, in a superscalar processor, the control and
connections require a large amount of circuit area. For
instance, while more than 90% of Itanium 2 die is
devoted to communication, control and storage
overhead, only 6.5% is consumed by the ALU and the
registers files [7].

Recently, the array processor architectures have been
revised [1-4] by profiting from the data-driven
characteristics of multimedia applications. Since many
design decisions must be taken in order to implement an
efficient architecture for a given set of applications,
environments to efficiently experiment with different
architectural features are fundamental. This work is part
of an ongoing development environment [5], named as
EDA (Environment for exploring Dataflow
Architectures). Our contribution is to implement a
mapping tool as shown in Figure 1.

Fig. 1 Mapping flow.

Previous works [4, 6] have addressed the mapping of
data-driven algorithms on regular array architectures. A
place and route algorithm for a regular array architecture

has been proposed in [4]. This work analyzes only the
hexagonal topology with a fixed interconnection degree.
On the other hand, most of array architectures are based
on grid topology [2,4]. Recently, Bansal et al. [4] have
explored some interconnection patterns on a grid
network (See Fig. 2a-c), and the experimental results
point out that the configuration shown in Fig 2b leads to
good performance for the DSP considered benchmarks.
Our approach differs from the previous ones in two
significant ways: (a) Compare hexagonal and grid
topologies; (b) Present a object-oriented mapping
implementation to model different patterns.

2. A FLEXIBLE MAPPING

Our mapping algorithm takes advantages of Java and
XML technology to enable a portable and flexible
implementation. The object-oriented approach provides
a easy way of modeling grid, hexagonal, hypercube,
octal, as well as others topologies. The XML notation
have been chosen as an input/output format (see Fig. 1)
to easily integrate with other environments.

Fig. 2 Different grid connections

The implementation is based on three main classes:
the array, the PE and the border. The array class
implements the place and routing algorithms. The array
and neighbor parameters (number, relative name and
their positions) are specified by PE classes. Finally, the
border class models the number and type of connections
between the neighbors. A PE can be connected to 0-hop
and 1-hop neighbors (see Fig. 2b) or can have two bi-
directional connections to 0-hop neighbors (see Fig.
2d). Our mapping algorithm enable us to explore the
connection patterns. Moreover, a comparison between
different topologies can be performed.

The place and route algorithm, based on the work
proposed by [6], has been implemented as an initial

solution. First, the placement is done by performing a
depth first traversal on the dataflow graph. The PEs are
allocated by level at the array lines. Then, each line is
rearranged. For each edge in dataflow graph, the PE
source node is added to the PE list . Let P1,...,Pn be the
PE list. The PE list is traversed as follows: a PE is
removed from the list, and its partial paths are connected
to the neighbors. Then, the neighbors are added to the
list. The route is done when the list becomes empty.

Fig.3 Different topologies and connections

3. TARGET ARCHITECTURES

An array architecture is scalable thanks to the
regular design and the local connections. A grid
topology can have different configurations. Fig. 3a
shows that a grid with two bi-directional connections
(G2) can perform a computation and two parallel
routing. However, the grid with only one connection
(G1) can either perform a computation or two routing.
Fig. 3b shows two hexagonal PE named as H1 and H2,
respectively. H1 can perform a computation and a
routing. H2 can perform a computation and three
routing. In this example, H2 have an input and an output
connection, which is more constrained than two bi-
directional connections.

4. EXPERIMENTAL RESULTS

The N-tap FIR filters have been chosen to explore
different configurations by using our mapping approach.
Table 1a shows the mapping results for a range of N-
Tap FIR (see Column 1). Column N,E specifies the
number of nodes and edges for each dataflow FIR
graph. The average path length of mapped FIR onto
three topologies are shown in Column 3-5, for 0-hop
hexagonal, 0-hop grid (see Fig 2a), and 1-hop grid (see
Fig. 2b). All PE have two bi-directional connections.
From the results in Table 1, we see that the hexagonal
achieves the shortest path.

Table 1a. N-Tap FIR mapping

FIR N,E HEX GRID 1-HOP GRID
2 7,7 1 1.28 1.28
4 13,15 1.2 1.86 1.46
8 25,31 1.32 1.58 1.45

16 49,63 1.52 1.83 1.57

Our mapping approach has been developed to easily
explore different configurations. The second experiment
was done to evaluate the number and type of
interconnections (see Table 1b). Three configurations
have been tested: (c1) 1 directional, (c2) 1 input and 1
output, (c3) 2 bi-directional. The 0-hop hexagonal (H)
and the 1-hop grid (G) have been chosen. Again, the bi-
directional hexagonal achieves the best results. Previous
work [4] have shown that 1-hop was the best
configuration. However, no direct comparison can be
done, since the benchmarks are different and the
hexagonal topology was not evaluated.

Table 1b. N-Tap FIR mapping

 4-TAP 8-TAP 16-TAP
 H G H G H G

C1 1.4 1.8 1.9 1.7 2 1.87
C2 1.27 1.53 1.35 1.48 1.57 1.6
C3 1.2 1.46 1.32 1.45 1.52 1.57

5. CONCLUSION

This work presented a fast and flexible mapping
algorithm for data-driven array architecture. The CPU
time was less than 200 milliseconds. Moreover, this
approach is flexible and the topology as well as the node
interconnection degrees can be easily added, in reason
of the Java and XML technologies. Future works will
include other topologies and routing algorithms.

6. ACKNOWLEDGMENTS

The student André Bigonha Toledo receives his
scholarship from PIBIC/CNPq.

7. REFERENCES

1. Arthur H. Veen, “Dataflow machine architecture,” in ACM
Computing Surveys, Vol. 18, Issue 4, Dec. 1986, pp. 365-
396.

2. R. Hartenstein, “A Decade of Reconfigurable Computing: a
Visionary Retrospective,” In Int’l Conf. on Design,
Automation and Test in Europe (DATE’01), Munich,
Germany, March 12-15, 2001, pp. 642-649.

3. PACT XPP Technologies, Inc., “The XPP White Paper,”
Release 2.1.1, March 2002, http://www.pactxpp.com.

4. N. Bansal, S. Gupta, N. Dutt, and R. Gupta, “Network
topology exploration of mesh-based coarse-grain
reconfigurable architectures,” DATE, 2004.

5. Ricardo Ferreira, João M. P. Cardoso, and Horácio C. Neto,
"An Environment for Exploring Data-Driven
Architectures" in 14th International Conference on Field
Programmable Logic and Applications (FPL'04),
September, 2004, LNCS Springer-Verlag.

6. Israel Koren, Bilha Mendelsom, Amherst Irit Peled, Gabriel
M. Silberman, “A Data-Driven VLSI Array for Arbitrary
Algorithms”, IEEE Computer, 21 (10), 1988, pp: 30 – 43

7. Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucek
Khailany, Jung Ho Ahn, Peter Mattson, and John D.
Owens. Programmable Stream Processors. IEEE Computer,
pages 54-62, August 2003.

