
ADL-Based Methodology for Extensible ASIP Cores: a
Case Study

E.K. d’Ávila, V.A. Carlos
∗

, L.C.V. dos Santos
†

Computer Science Department
Federal University of Santa Catarina

Florianópolis, SC, Brasil

{eduardok,vcarlos,santos}@inf.ufsc.br

ABSTRACT
This paper applies an ADL-based methodology to the de-
sign of an ASIP and the generation of its software toolkit
(instruction-set simulator, assembler, cross-compiler). For
the sake of case study, a simple digital audio processing
application was chosen. The methodology starts from an
untimed functional description of the instruction set archi-
tecture, which is then refined into a cycle-accurate func-
tional SystemC model. This model is then gradually refined
towards an HDL RTL model, the starting point for ASIP
synthesis on a FPGA platform.

1. INTRODUCTION
The growing complexity of embedded systems asks for

higher levels of abstraction, design reuse and scalable veri-
fication. The design of a system starting at the RT level as
provided by most HDLs is unable to cope with the demand
of platforms containing one or more CPUs, several busses,
IP blocks, memories and I/O devices. Although most of the
EDA community agrees upon SystemC [8] as the future stan-
dard language for system-level design [5], the gap between
a transaction-level (TL) model written in SystemC and a
RTL model written in VHDL is enormous. Although Sys-
temC allows the refinement of models from TL to RTL, some
mechanisms have been introduced to simplify and speed up
the creation and maintenance of functional models for CPUs
with the introduction of architecture description languages
(ADLs) [1] [2] [4] [6] [7]. The role of an ADL is especially
important when a general-purpose CPU is not adequate to
meet real-time constraints or power restrictions of a given
application and an ASIP has to be used instead. ADLs are
crucial to ASIP usability, since there is no pre-existent soft-
ware development toolkit (e.g. cross compiler, instruction-
set simulator, assembler, linker, etc.) able to comply with
the tailored instruction set. This makes ADLs a common
starting point for model refinement, CPU synthesis and au-
tomatic toolkit generation.

This work presents a case study whose ultimate goal is the
automatic generation of ASIPs (comprising their toolkits).
To pave the way towards full automation, two key elements
are addressed. First, a design methodology is defined and
used during the design of an ASIP for a simple digital signal
processing application. Second, the main refinement steps

∗supported by CNPq IC grant.
†Advisor.

R-type instruction

LBX RD (RS) IMM4

LW RD (RS) IMM4

SW RD (RS) IMM4

SBS RD (RS) IMM4

ADD RD RS RT

SUB RD

SLT RD

MULT RD

RS

RS
RS

RT

RT
RT

LBX RD (RS) IMM4

LW RD (RS) IMM4

SW RD (RS) IMM4

SBS RD (RS) IMM4

LBX RD (RS) IMM4

LW RD (RS) IMM4

SW RD (RS) IMM4

SBS RD (RS) IMM4

I4-type instruction

J-type instruction

JUMP IMM12

I8-type instruction

LBX RD

LW RD

SW RD

LLI RD IMM8

LUI RD

BEQZ RD

IMM8

IMM8

IMM8

Figure 1: Instruction-Set Architecture

are traversed: some of them are actually automated; oth-
ers, although provisionally performed manually, contribute
to identify the key issues for further automation.

The application consists of a set of audio effects (delay,
distortion, flanger, phaser, tremolo), as explained in [11].

2. RELATED WORK
Several ADLs have been reported in the literature. The

early ADLs were developed for compiler retargetability (e.g.
ISDL [4]). Later, the evolution of system-level design has
given rise to ADLs designed for the automatic generation
of both efficient compilers and cycle-accurate CPU models.
Some ADLs, like EXPRESSION [2] and ArchC [1], reach
this goal by providing separate views of the instruction-set:
a semantic view (for compiler generation) and a behavioral
view (for simulator generation). Other ADLs, like nML [6]
and PEAS-III [7] aim at the same goal by combining both
views into a more restrictive grammar. Essentially, the work
in this domain focuses on improvements to overcome such
grammar restrictions and redundant views [3], the extension
of generic processor cores [9] and the characterization of em-
bedded applications to allow such instruction-set extension
[10].

In this work, we adopt the ADL ArchC [1], an open-source
architecture description language which has the advantage
of generating functional models in SystemC, thereby allow-
ing direct model integration with other component models
within a platform described in SystemC. Our main goal is
to envisage how the ASIP hardware can be synthesized from
an ADL description, along with its software toolkit.

3. THE CORE ARCHITECTURE
Since our goal is the automatic generation of a software

toolkit, it seems better to avoid the well-known problems of
creating efficient compilers for classical DSP architectures.
That’s why our core architecture is based on a load-store
RISC-like machine, as summarized in Figure 1.

To minimize the amount of memory, we have chosen an



8-bit representation for audio sample storage. However, to
alleviate overflow and rounding effects, extended arithmetic
precision (16 bits) is used within the core. By providing
16 general-purpose registers, good register allocation is ex-
pected.

4. DESIGN FLOW METHODOLOGY
Figure 2 summarizes our design methodology.

Aplication Source
Code

Front End

Back End

Assembly Code

Assembler

Executable

Cross-Compiler

SW Synthesis Tool Chain

Untimed Functional
Description

Cycle Accurate
Description

Simulator Generator
(ArchC/SystemC)

Assembler
Generator

ISS

Loader (Scripts)
FPGA Platform

RTL Synthesis

RTL Description
(HDL)

Architectural
Synthesis

Functional Model
Description
(SystemC)

Functional Model
Generator

(ArchC to SystemC)

HDL Simulator

Back Annotation

ADL Description

HW Synthesis Tool Chain HW SimulationHW/SW Co-Simulation Tool Chain
(main flow)

Figure 2: The design flow methodology

The ADL description is firstly provided as an untimed
functional (UF) model, then refined to cycle-accurate (CA)
model. A plain instruction-set simulator (ISS) or a cycle-
accurate simulator is automatically generated from the proper
ADL description and fed with the executable code generated
by the SW synthesis flow. This automation steps are already
implemented within the ArchC toolbox.

The SW synthesis flow embodies the tools responsible to
allow easy and efficient high-level ASIP programming. Since
the core architecture is extendible both the compiler and the
assembler have to be automatically modified to comply with
the new instructions. That’s why the compiler’s back-end
must extract information automatically from the ADL de-
scription either for instruction selection (semantics from UF
or CA models) or for code scheduling (latencies from the
CA model). For the same reason, an assembler generator is
needed. In our implementation, the GNU GCC compiler is
adopted as a front-end and its back-end is modified to com-
ply with core extensibility. An assembler was implemented
for the architecture core.

We envisage a contemporary HW synthesis flow with us-
ing an ADL as starting point. From the CA ADL descrip-
tion, a CA model written in SystemC is generated. Archi-
tectural synthesis from SystemC is performed resulting in a
RTL description from which classical RTL synthesis is per-
formed targeting a FPGA platform. Then a Loader is used
to combine netlist and code storage information for FPGA
prototyping. In our implementation, VHDL is used for the
RTL description and Mentor Graphics tools for FPGA map-
ping. The Architectural Synthesis step is performed manu-
ally in this case study. Since first-generation architectural-
synthesis tools assume an HDL behavioral description as
starting point, most commercial tools can not be used di-

rectly to automate this step from a SystemC description.
Besides, the need for a second-generation architectural syn-
thesis has been advocated by the EDA community [5], where
HDLs are used for RTL synthesis and not for behavioral ar-
chitectural synthesis. When performing “manual” architec-
tural synthesis, we are making a first attempt at evaluat-
ing the challenges and needs of such a second-generation of
tools. The HW synthesis flow traversal is in progress.

5. EXPERIMENTAL SET UP
Initially, audio effect algorithms were written in Java.

Several audio (wave) input files were used to check if a given
effect was audible by an average listener. Then, each effect
algorithm was coded in assembly language and the binary
code was fed, along with the same audio input files, to the
ISS. The resulting audio output files were compared to the
one generated at the algorithmic level. Finally, this proce-
dure was repeated, replacing the plain ISS by the CAS. As
all generated output files matched, both the core architec-
ture and the core assembler were properly validated.

6. CONCLUSION AND PERSPECTIVES
This paper shows the current status of research work in

progress. The design methodology follows the EDA trends.
The proposed core architecture was properly validated and
minimum software infrastructure was provided. Besides, an
assembler generator and a cross-compiler will be available
in the near future. In the long run, the main contribution
of this case study is to give clues on how some manually
performed system-level design steps should be automated,
thereby paving the way for further research activities.

7. ACKNOWLEDGMENTS
We would like to acknowledge the ArchC support of the

Computer Systems Laboratory at the Institute of Comput-
ing of the University of Campinas.

8. REFERENCES
[1] ArchC. http://www.archc.org.

[2] A. H. et al. Expression: A language for architecture
exploration through compiler/simulator
retargetability. In DATE Conference, Mar 1999.

[3] G. B. et al. A novel approach for flexible and
consistent adl-driven asip design. In DAC, Jun 2004.

[4] G. J. et al. An instruction-set description language for
retargetability. In DAC, Jun 1997.

[5] G. M. et al. System level design: Six success stories in
search of an industry. In DAC Panel, session 22.1,
Jun 2004.

[6] M. H. et al. Generation of software tools from
processor descriptions for hardware/software codesign.
In DAC, Jun 1997.

[7] M. I. et al. Peas-iii: An asip design environment. In
ICCD, Sep 2000.

[8] SystemC. http://www.systemc.org.

[9] Tensilica. http://www.tensilica.com.

[10] P. Yu and T. Mitra. Characterizing embedded
applications for instruction-set extensible processors.
In DAC, Jun 2004.

[11] U. Zlzer. DAFX: digital audio effects. West Sussex:
Wiley, 2003.


