
Design of a Reconfigurable Cluster Computer Node

Josúe Paulo Jośe de Freitas, Alexandra Aguiar, Ḿarcio Kreutz,
Tatiana G. S. Dos Santos, Rafael dos Santos

Universidade de Santa Cruz do Sul - UNISC - Santa Cruz do Sul, RS
{josuefreitas,xandaaguiar}@mx2.unisc.br,{kreutz, tatianas,rsantos}@unisc.br

Abstract

The goal of this work is to design the first prototype of a
reconfigurable cluster computer node. The ACR (Agregado
de Computadores Reconfigurveis, in portuguese) project
pursue, among others, the objective of aggregating the tech-
nology of reconfigurable logic devices with computer clus-
ters. An ACR cluster is composed of reconfigurable nodes
that exchange messages through an embedded interconnec-
tion network enabling the distributed processing of applica-
tions on reconfigurable cluster nodes. This paper presents
how the first version of an ACR cluster node was developed.

1. Introduction

The main goal of the ACR project is to integrate the spa-
tial processing of reconfigurable logic devices [1] into dis-
tributed/parallel processing models by using message pass-
ing methods to communicate across reconfigurable nodes.

Most of the traditional clusters are based on off-the-shelf
conventional PC (Personal Computer) architectures because
they are widely available at relatively low cost. However,
for a large number of applications, only a small subset of
the whole instruction set is really needed [2] and, similarly,
only a little portion of the hardware available in these sys-
tems is used. On top of that, a general purpose micropro-
cessor is developed to obtain the best performance based on
an average workload, thus not offering optimized resources
for specific applications. High power consumption, physi-
cal space, heat dissipation, and other aspects can also be
considered of negative impact.

In this context, the first node was designed integrat-
ing the communication stack into an FPGA with a Fem-
toJava microcontroller generated by the Sashimi tool [3].
A free and open source communication stack was modified
to enable sending data through the User Datagram Proto-
col (UDP)[4]. The integration of the communication sys-
tem within the FPGA with the processor allows for a signif-

icant reduction of the communication latency since all com-
munication layers are implemented in hardware.

2. FemtoJava microcontroller

The FemtoJava microcontroller is an ASIP generate from
a Java specification by the Sashimi tool. The Java source
code, developed according to some patterns, is compiled
like any other Java application and analyzed by the Sashimi
tool. The tool selects for the FemtoJava microcontroller
only the necessary logic and arithmetic units to the exe-
cution of the target application, saving hardware, and then
generates the memory initialization files (mif) for the RAM
(data) and ROM (instructions).

3. Comunication stack

The communication stack is a conceptual model where
the communication protocols are organized upon, for exam-
ple a TCP/IP or UDP/IP stack. The communication stack
used in the first version of the node is an UDP/IP stack.
Originally it provided only support to receive UDP packets,
but we designed and implemented a UDP send block and
now UDP packets can also be sent through the network. In
this first prototype the stack works in full-duplex mode at
10MB/s.

All layers are implemented in hardware. The Applica-
tion layer, represented by the FemtoJava Microcontroller
and the application running on it, make the communication
with the Transport Layer. On the other side, the Data link
Layer communicates with the Physical Layer (PHY), that is
ASIC already implemented on the prototyping board. Fig-
ure 1 shows how the whole system looks like, including the
above explanation.

4. Node Structure

The node core is composed by three structures: the com-
munication stack, the FemtoJava microcontroller and the in-
tegration layer. The integration layer is the structure that co-



ordinates the data receive and send processes to/from the
communication stack and the microcontroller.

The integration layer is composed by two FIFO (First
In First Out) structures and three Finite State Machines
(FSMs). The Sending FIFO stores the outgoing data gen-
erated by the FemtoJava Microcontroller to be send trough
the UDP/IP stack. The Receiving FIFO stores the incoming
data from the UDP/IP stack. The FSMs have to make the
coordination of the reading and writing processes of the FI-
FOs and to generate the signals (interruptions) to the com-
munication stack and the microcontroller, respectively. Fig-
ure 1 shows the structure of the node.

Figure 1. Node structure and the intra-node
data and control flow

Receiving FSM (FSM1): this FSM receives a signal
from the stack, notifying that a data is arriving to the Re-
ceiving FIFO. Awe(write enable) signal is asserted telling
the Receiving FIFO to proceed with the reading from the
bus.

Sending FSM (FSM2): this FSM has as input signal
the inverted value of the output portEmptyof the Send-
ing FIFO. Every time that this FSM is in the Idle state and
theEmptysignal is low, the FSM will generate the signals
to proceed the reading from Sending FIFO and tell the com-
munication stack that a valid data will be available on the
bus.

Due to the full duplex operation of the stack, which al-
low sending and receiving at the same time, was possible to
decouple into two different FSMs the integration between
the FIFOs and the communication stack.

FemtoJava-FIFOs FSM (FSM3):this FSM is dedicated
to synchronize the reading, from the Receiving FIFO, and
the writing, to the Sending FIFO, of the data to and from
the FemtoJava microcontroller.

When a data is available on the Receiving FIFO, the
FSM generates an interruption signal, which is connected to

one Interruption Request (IRQ) port, making the IRQ rou-
tine of the application proceed with the reading from the
input port. After that, the data is processed and a record re-
quest, through the second output port, is made. The pro-
cessed data is recorded in the microcontroller first output
port, and finally written into the Sending FIFO by this FSM.

The number of states of each FSM is based in the num-
ber of cycles necessary for each operation.

5. Results

The node structure is now validated by simulation. A
testbench simulating the behavior of a PHY was manually
developed. This testbench simulate the receiving of an Eth-
ernet Frame with an IP datagram on it and an UDP packet
into the IP datagram. The data field of the UDP packet con-
tains the data that will be processed by the FemtoJava mi-
crocontroller.

The whole system has maximum clock speed of
64.91MHz and uses 3.089 logic elements and 6.272 mem-
ory bits in a Cyclone EP1C20 FPGA (20.000 LEs and
294.000 Memory bits). Some values like the number of
logic elements and memory bits may vary in the next ver-
sion of the node, since more complex applications will re-
quire more RAM and ROM space in the FemtoJava micro-
controller and new features will be added to the communi-
cation stack.

References

[1] Dehon, A.; Wawrzynek, J., Reconfigurable Computing:
What, Why, and Design Automation Requirements ?, in Pro-
ceedings of the 1999 Design Automation Conference, pp.
610-615. June 1999.

[2] Patterson, David A.; Ditzel, David R.: The Case of Reduc-
tion Set Computer, ACM SIGARCH Computer Architecture
News - Volume 8 , pp. 25 ? 33. Issue 6. 1980.

[3] ITO, Sergio Akira. Projeto de Aplicaes Especficas com
microcontroladores Java Dedicados. Porto Alegre: CPGCC
UFRGS. 2000.

[4] Postel, J.: RFC 768: User Datagram Procotol. 1980.


