
An Application Development Environment for a SoC with a Simulator in SystemC

Augusto José de Oliveira Martins
augustoom@yahoo.com.br

José Camargo da Costa
camargo@ene.unb.br

Universidade de Brasilia - Faculdade de Tecnologia - Departamento de
Engenharia Eletrica - Caixa Postal 4386 - Brasilia - DF - CEP 70904-970

Abstracts

An application’s development environment which

integrates an editor, an assembly tool, a simulator, and a
debug tool aimed to a SoC is described. The SoC has a 16
bits RISC processor, memories, an RF transceiver, digital
interface and A/D interface. The main feature of the
development environment is to provide the possibility to
test some piece of code even in the absence of a fully
functional prototype of the SoC. The simulator is
implemented with SystemC; the editor and the debug tool
are being developed as Eclipse plug-ins; the assembly tool
is not presented here.

1. Introduction

Our University, together with seven other institutions,
is developing a system to control irrigation on crops [1].
The system is composed by a base station, field stations
and nodes. The field stations gather information from the
nodes through a wireless link, accurately identify areas of
moisture deficiency and send instructions to the nodes,
determining which ones should act on latch solenoid
valves, in order to deliver the required amount of water to
the plants. Each node is composed by a CMOS 0.35µm
SoC (System on Chip), a tensiometer with a solid state
pressure sensor, an actuator which controls the water flow
through a solenoid valve, a solar powered power supply,
an RF antenna, and embedded softwares. The SoC consists
of a RISC microprocessor, memories, an RF transceiver,
digital interface and A/D interface.

In this context, a development environment is being
implemented to provide programmers with tools to
produce and test their piece of software for that SoC. An
assembly tool has been implemented, which is basically a
two step assembler. It was made in such a way that it is
possible to change, add or delete the pseudo-instructions
just by editing a text file.

Two technologies are being used to implement the
other parts of the development environment: the Eclipse
Platform [2] and the SystemC Library [3]. The first is an
open platform for tool integration that provides an open,
extensible, general purpose Integrated Development
Environment which can be extended by adding plug-ins.
The Eclipse is visually organized by perspectives. Those
perspectives are groups of graphic elements (like,
windows, menus, and toolbars) which are functionally

related. The other technology, SystemC, is a library
implemented in standard C++ which provides hardware-
oriented construction using C++.

2. The development environment architecture

In Figure 1 is shown the global architecture of the
development environment. There are three main programs:
the visual environment, the simulator, and the assembly
tool. The first software provides a graphic interface to the
user. It is a stand-alone program, but it is dependent on the
others to be fully operational. The user does not need to
interact directly with the simulator and the assembly tool.
The visual environment starts them, when they are
necessary, and specifies what they should do.

Figure 1. The Development Environment Architecture

The communication with the assembly tool is

achieved by initialization parameters and files. The
commands needed to accomplish an interactive simulation
must use a more complex data communication approach.
In order to do so, the standard input/output streams in the
simulator were defined as channels to receive the
commands and reply them; and pipes were used by the
visual environment to send the commands and read their
answers.

That solution is more flexible and easier to implement
and debug than other inter process communications as
shared memory or sockets. Other desired feature made

possible is that the simulator can be a stand-alone
program.

2.1. The simulator

The simulator is a translation from VHDL description
[4] to SystemC. It provides a register transfer level model
of the SoC for test, debug, and validation of pieces of
software and hardware’s functionalities.

The simulator’s interface defines a set of commands
and answers which controls the simulation, informs about
simulation’s events, and synchronizes the simulator with
the virtual environment. Two desired features of that set
are: they hide most of the SoCs internal details, and make
it possible to replace the simulator without affecting the
visual environment. Therefore, it is possible to have SoCs
different versions working with the same visual
environment.

Figure 2 shows a partial sequence diagram of
communication between the visual environment and the
simulator generate by the user’s interaction. The first
arrow to the simulator represents its launch. The next two
are commands to it. The simulation’s answers are the
dashed arrow. The “ok” message is for synchronization,
and means “I have done what you asked. Now, you can
send me another command”.

Whether, during a period of clock, a register or
memory word is changed or an instruction is started or
finished, the simulator will send messages to inform those
events.

The command on the bottom Figure 2, “serialize”, is
used to get all necessary information to save the state of a
specific instant. To do the complementary operation,
“deserialize” is executed with the data that had been sent.
Those commands make possible to save how a simulation
is at a moment and come back when it is wanted.

2.2. The visual environment

The visual environment is developed as plug-in to the
Eclipse Platform in Java. It provides a graphic interface
for the user which is divided in two perspectives: the
editor, the simulator/debugger.

The editor perspective is like a usual code editor
integrated with a compiler. The simulator/debugger
perspective provides an interface to the simulator that
automated all functionalities. The user can step through
instruction by instruction of his program or run the
simulation for undefined number of instruction. In this
mode it is possible to command a stop or set break points
where the simulation will be stopped automatically.

A textbox with program’s code shows the line which
is being executed. Statistic information related to the
simulation as time consumed; the number of executed
instruction; the amount of usage memory; are available to
the user. A table with the value of the whole memory’s
words, and other with the registers is also available. Other

feature provided is the possibility of save whole SoCs
internal state at one specific instant and restore it later.

Figure 2. A sequence diagram of commands and the resulted
events

3. Conclusions

The simulator was successfully developed for a
simplified SoC version, and is now under testing. The SoC
test plan [4] was used to validate it. The visual
environment has been fully described and the object-
oriented analysis has been made. In the simulator’s next
version, the modules RF transceiver, digital interface, and
A/D will be implemented.

4. Acknowledgments

The authors would like to acknowledge CAPES,
CNPq and PADCT/Millenium Institute (Brazilian
government agencies) for financial support.

5. References

[1] J. D. Costa et all., “Projeto de Estruturas de um Processador
RISC para Aplicação em um SoC para Controle de Irrigação”,
Proceedings X Iberchip Workshop, Iberchip, Cartagena de
Indias, Colombia, 2004 (in Portuguese).

[2] http://www.eclipse.org

[3] http://www.systemc.org.

[4] J. D. Costa, “Implementação de um Processador RISC 16-bits
CMOS num Sistema em Chip”, Master Thesis in Electrical
Engineering, University of Brasília, Brazil, 2004 (in Portuguese).

