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Abstract:  

We present an idea of how a genetic algorithm could be 

used in design optimisation of nanoelectronic devices. 

The genetic algorithm evolves new device geometries 

and parameters from an initial device, searching for 

better solutions of a specific problem. A model that 

represent in great detail the dynamics of tunneling events 

for electrons in coupled quantum wells, making use of 

fundamental physical principles is used to evaluate the 

fitness function of these evolved devices. 

1. Introduction 

The development of the next generations of integrated 

circuits will require new working devices with extremely 

small physical dimensions. These new working devices 

need not to mimic CMOS Field Effect Transistors, where 

current is controlled by gate voltage. Single electron 

devices such as SET’s (Single-electron Transistors), 

CQW’s (Coupled Quantum Wells), and CQD’s (Coupled 

Quantum Dots) are being considered. To understand 

single electron transport in such devices, we are 

developing a consistent model and a robust simulation 

strategy [1]. 

These new devices are understood to work in a non-

intuitive way, making them hard to design. As a result it 

makes sense to investigate the use of intelligent 

automatic design techniques, such as genetic algorithms 

[2], which have proven to exhibit many desirable 

properties such as requiring no auxiliary information 

about the search space, except a fitness function, and are 

considered to be very robust. 

 

2. Simulation   

The simulation model used [1], attempts to represent in 

greater detail the dynamics of tunneling events for 

electrons in CQW's, making use of fundamental physical 

principles. Among those principles we highlight the 

charge and energy conservation. Our model tries to 

overcome some of the limitations of the orthodox 

approach [3], in a physically intuitive manner. 
The simulation scheme is presented in Figure 1, where 

two quantum wells, coupled through a tunneling junction 

are under the influence of an externally applied electric 

field. Let us consider that somewhere in the setup there is 

an excess electron. We are assuming the absence of any 

additional charges, free to move under the action of an 

externally applied electric field, or under the influence of 

the confined electron and its movement. We also assume 

the absence of magnetic fields. 

 

 
Figure 1: Coupled Wells with Externally Applied Bias. 

 

Simulation starts with an externally applied voltage 

forcing electron confinement in one of the wells. In first 

5 ps (picoseconds) of simulated time the voltage is 

removed linearly. The electron confinement is then 

verified evaluating the difference of charge fraction 

inside each well.  Then, a second voltage, in the opposite 

way is applied, increasing from 10 to 15 ps and 

decreasing from 15 to 20 ps, linearly. Final results are 

collected after 25 ps of simulated time.  

Figure 2 presents the charge time evolution in each well. 

Initially the electron is scattered, but a little time later, 

forced by the voltage ramp, the electron is confined in 

well 2. Then, the second ramp is applied and forces 

electron tunneling to well 1. One can see from Figure 2 

that no other significant charge exchange is observed 

until the end of simulation. 

 

 
Figure 2: Total charge time evolution in each well. 

 

Figure 3 presents the electronic current, evaluated in the 

middle of barrier between wells. Comparing Figures 2 

and 3 it can be observed that the simulation correctly 

predicts the charge transfer processes in the system. 

Tunneling time definition used here is the time while 

significant current (i.e. greater than 10
-7
) is present after 

10 ps. This criterion is a magnitude order higher than 

device simulator noise due precision errors.  



 
Figure 3: Current density's time evolution. 

 

3. Evolutionary Framework 

The idealized evolutionary framework is presented in 

Figure 4, were the genetic algorithm has been developed 

in MATLAB [4] and the device simulator in ANSI C. 

The parameters that will be used are presented in genetic 

code form in Figure 5.  

 

 
Figure 4: Block diagram of evolutionary framework. 

 

 

 
Figure 5: Genetic code parameters representation. 

 

The block diagram of the genetic algorithm is presented 

in Figure 6. As a whole, the scheme proceeds in the 

following fashion: 

 

     1 - It starts with a set of initial devices, which are 

randomly created. These devices are genetically 

represented in an array of values (code), were each 

position represents a device parameter.  

    2 – Solutions are simulated and simulator evaluates 

fitness of each device. 

     3 – A selection criterion determines which parent 

devices will be used to create new offspring devices.  

    4 – Some genetic operators like recombination and 

mutation are used to generate a new set of devices. 

     5 – Repeat steps 2, 3 and 4 until either a specified 

number of generations have been run, or some threshold 

for fitness has been achieved. 
   

 
Figure 6: Block diagram of the genetic algorithm. 

 

During the process of evolution some limitations have to 

be imposed to genetic algorithm search of the solution 

space to guarantee a final result with feasible devices. 

Materials properties like barrier insulator breakdown 

voltage, conductivity, ohmic resistance, in addiction of 

fabrication technologies limitations are considered.    

4. Fitness Function and Operators 

The adaptation goal is determine solely from the fitness 

function. That is a major characteristic of genetic 

algorithms, which require no prior knowledge of the 

specific optimization task. So it plays a very important 

role in any genetic algorithm based system.  

Our study does not have yet a final fitness function 

specified. A relation between charges inside wells 

associated with the tunneling time, that is determined 

through current density time evolution, is now being 

used.  Others fitness functions could be specified, 

allowing design with different characteristics.     

The genetic operators that will generate new solutions 

also play an important role. The traditional operators are 

recombination and mutation [5]. Recombination operator 

were offspring parameters are the parents parameters 

average is now being used, but others operators are been 

studied and will be implemented soon. 

 

5. Conclusion and Future Work 

We are presenting an idea of how genetic algorithms 

could be applied in the optimisation of nanostructures. 

New non-conventional device geometries and non-

intuitive characteristics could be found.  

We also have plans to extend the simulation model for 

2D and 3D cases and adapt the evolutionary framework 

for these cases.   
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