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ABSTRACT 
 

This paper presents a technique of derivative 
approximation in the design of analog circuits, which can 
be useful in the implementation of a function derivative. 
We present an example and discuss some aspects 
involved in the application of this technique. 

 
 

1. INTRODUCTION 
 

Analog circuit design is an important aspect in many 
applications, such as artificial neural networks, fuzzy 
systems, and as a support for digital circuits [1]. In the 
design of analog circuits we can employ several 
techniques and mathematical resources to obtain the 
implementation of a certain function. For example, at the 
device level, the MOS transistor can be exploited in the 
various regions of operation. In saturation, it operates as 
a quadratic function; in subthreshold, as an exponential, 
and in triode, as a resistor. At the circuit level, functions 
such as addition, subtraction, multiplication, derivative 
and integral can be exploited. This work presents a 
derivative approximation in the design of analog circuits. 
This technique has been successfully employed in the 
design of radial basis circuits [2]-[4]. We present an 
example and discuss some aspects involved in the 
application of the technique.   
 

 
2. DERIVATIVE APPROXIMATION 

 
Consider the expression of the derivative f’(x) of a 

function f(x): 
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We can rearrange (1) in the following way:  
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where ε is an error term and 1/∆ is an amplitude gain. 
Equation (2) can be applied to any differentiable 
function.  

We note that the derivative function can be approximated 
by a difference operation with a shift in inputs. The 
approximation will be closer to the derivative function 
the smaller the shift. Furthermore, if we eliminate the 
factor 1/∆ and the term ε, we conclude that the function 
g(x) given by: 

 
g(x) = [  f (x + ∆) – f (x) ] (3)

has the form of the derivative function except by a gain 
factor 1/∆ and an error term ε.  

 
 

3. EXAMPLE: A HYPERBOLIC SECANT 
SQUARED 

 
The differential pair is one of the most used blocks in 

analog circuits. We will present the application of the 
derivative approximation technique in the design of a 
circuit that implements the transconductance function of 
an emitter-coupled pair (Fig 1). The differential current 
Id and the differential voltage Vd are related by: 

 
( )VtVdIId tF 2/tanh..α=         (4)

where It is the tail current, αF is the relation IC /IE and Vt 
is the thermal voltage. The transconductance gm is given 
by equation (5): 
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Fig. 1: Emitter-coupled pair. 



The output of the differential pair is a hyperbolic 
tangent function (Fig. 2). The transconductance curve is 
its first derivative and has the form of a hyperbolic secant 
squared (Fig. 3).  
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Fig. 2: DC Transfer Characteristic of an Emitter-
Coupled Pair. 
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Fig. 3: DC Transconductance Characteristic of an 
Emitter-Coupled Pair. 

 
 
The circuit that realizes the derivative function is 

presented in Fig. 4 (see appendix). The experimental data 
presented in this paper were obtained with a breadboard 
prototype. The differential pairs were implemented with 
OTAs presented in the LM13600 dual-OTA integrated 
circuit. The output voltage Vout is obtained by the 
difference of OTA1 and OTA2 outputs which is 
implemented by current-mode summing at the resistor 
Ro. Ib1 and Ib2 allow the amplitude adjustment. The 
currents are in the milliamp range. The voltage shift 
vdelta in the input of OTA2 is fixed in 100mV. OTA3 is 
a multiplier and allows width adjustment by Ib3 and 
center adjustment by Vc.  

 
 

4. RESULTS 
 

Fig. 5 shows the experimental results for the 
hyperbolic secant squared implementation. Fig. 6 shows 
the circuit response for triangular signal in the input.  
 

 
Fig. 5: Experimental data obtained for the circuit. 
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Fig. 6: Circuit response for a triangular input signal. 
 
 

5. CONCLUSIONS 
 

The proposed technique allows the realization of the 
derivative of a circuit response. An example of 
application where this technique could be useful is in the 
implementation of functions for artificial neural networks 
with on-chip learning. Finally, the technique can be a part 
of the repertoire available to the designer in the 
implementation of analog functions. 
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8. APPENDIX 
 

 

 
 

Fig. 4: The Hyperbolic Secant Squared circuit. 
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