
AUTOMATIC ARCHITECTURE GENERATION FOR COARSE-GRAINED
RECONFIGURABLE ARRAY

Tiago Teixeira, Brian Luppi, Ricardo Ferreira (Advisor)
Departamento de Informática Universidade Federal de Viçosa

Viçosa, 365700-000
{thiagus,bpimentel,cacau}@dpi.ufv.br

ABSTRACT

Coarse-grained reconfigurable computing architectures vary
widely in the number and characteristics of the processing
elements and routing topologies used. This paper proposes a
design space exploration able to generate automatically
different coarse-grained reconfigurable array architectures. The
achieved experimental results show that our approach can be
useful to evaluate a large set of interconnect topologies as far as
coarse-grained reconfigurable computing architectures are
concerned.

1. INTRODUCTION

Coarse-grained architectures appears as a more scalable solution
than fine-grained architectures (e.g: FPGA) for reconfigurable
hardware, and become increasingly important in recent years [1,
2, 3]. This approach reduces the configuration time and
complexity, as well placement and routing problem size, and
design and synthesis time. However, many array architectures
seem to be designed without strong evidences for the
architectural decisions taken. Remarkably the work presented in
[4] has been one of the few exceptions which addressed the
exploration of architectural features. Our approach propose an
environment to generate and to evaluate a wide number of local
interconnection patterns. These local patterns are scalable,
which is fundamental to take advantages of new silicon
technology advances.

Our approach is based on genetic algorithm (GA)
optimization technique to explore the whole design space. A set
of architecture is taken as initial population, and each GA step
creates new architectures during the crossover operation and the
worst architectures are removed from the population. The
selective fitness function is calculated as to be proportional to
the average routing cost of a set of DSP kernel benchmarks
mapped on each architecture. Figure 1 shows a block diagram
of our approach.

Figure 1 – Design Exploration Environment
The rest of this paper is structured as follows. Section 2

describes the initial population composition. Section 3 presents
two approaches to represent an architecture as an individual and
the crossover operation. Section 4 shows the experimental
results. Finally, the conclusions and ongoing work are presented
in Section 5.

2. INITIAL POPULATION

This work consider only 2D array architectures. However, our
architecture model is a graph and can handle a n-dimensional
architectures. Each architecture is composed by a set of
Processor Elements (PE), for example, ALU, MUX, counters,
memory cells, etc. and a interconnection network. The
interconnection network is composed by a set direct connection
between two PE's. Let us consider that each PE has an unique
ID number. This number could be the array line and column
address. For instance, a PE(i,j) has a direct connection to a
PE(i+1,j) in a Grid Interconnection Network. The set of
architecture used to build the initial population consist on a
selection of most used architectures for coarse-grained and
random architectures. In addition, we propose to taken into
account a set of bit-operation based architectures. This set is
similar to multi-stage interconnection of SIMD architectures.

The coarse-grained architecture set is composed by Grid,
Hexagonal, Octal and N-Hop interconnection local patterns.
The random architecture set is generated by using random local
connection for each PE. The bit operation set is created by
using local patterns mixed to bit based pattern like hypercube,
shuffle-exchange, butterfly, baseline, etc. For instance, a cube
pattern can be generated a local connection for the PE(i,j) by
using inverting a bit on line address. Let us consider the PE(4,5)
or PE(100,101) in binary. A cube based connection on bit 2 will
interconnect PE(100,101) to PE(000,101) or PE(0,5).

3. AUTOMATIC ARCHITECTURE GENERATION

We propose two approaches to represent an architecture as an
individual in GA. The first approach is based on PE set or node.
The second approach is based on a local PE interconnect set.
Let us consider a NxM array architecture, where N and M are
the line and column number, respectively.

3.1 PE SET APPROACH
A architecture can be modeled as a set of PE. Each PE is
defined by its ID and a local connection set. Let us consider the
two architectures in shown in Figure 2(a), where each PE has 2
output connections. In the first architecture, each PE has a line
connection and a column connection. For the second
architecture, each PE has a diagonal connection and either a
line or a column connection. The architecture can be
represented as one-dimensional vector, where the position i
stores the set of local output connection from the PE i. Let us
consider the vector A and B in Figure 2(b), which represent the
two architectures in shown in Figure 2(a). The genetic
algorithm will create new architectures by applying a crossover
operation on Individual A and B. Suppose the vector cut-point
at position 2. Two new architectures will be generated as shown
in Figure 2(d). The first one has the PE 1 and 2 from A and PE
3 and 4 from B. Each PE brings its output connections to the
new architecture.

Figure 2 – PE Set Approach

3.2 LOCAL INTERCONNECT APPROACH
Let us consider homogeneous architectures, where a PE has the
same interconnect set. Let us consider the architecture in shown
in Figure 3(a), where each PE has 4 output connections in line
and column directions. This architecture is modeled by the
vector shown at the top of Figure 3(c). Each output has a
pattern in function of its line and column address, where we use
i as the line number and j as the column number. For instance,
the output 1 is a function of i-1, that is, the output is connected
to previous line and same column. Figure 3(b) shows another
architecture which local set is shown in Figure 3(c). The
crossover operator selects a cut-point in local set vector and two
new local sets are generated. Figure 3(d-f) shows the result of
crossover operation at cut-point 3 for the architectures
displayed in Figure 3(a-c).

Figure 3 – LOCAL INTERCONNECT APPROACH

4. EXPERIMENTAL RESULTS

The current prototype environment has been used to evaluate
the set of architectures by mapping a set of benchmarks on each
array architectures. The mapping tool presented in [5] has been
used. The set of benchmarks includes the following DSP
algorithms: FIR, CPLX, FDCT, Paeth, FilterRGB and SNN.
FIR is a 1-D finite-impulse response filter (examples with 16
and 64 of taps are used). CPLX is a FIR filter using complex
arithmetic. FDCT is a fast discrete cosine transform
implementation. Paeth is the PNG (Portable Network Graphics)
Paeth encoding routine. The Filter RGB is an image filter to
highlight an image by brightening or darkening the pixels in the
images, SNN is a symmetric nearest neighbor image filter.

The initial architecture set has 100 individuals, where 60%
was composed by regular architectures, 40% by random
architectures. The genetic algorithm has been runner for 100

generations. The fitness cost function of each architecture has
been calculated as the average routing connection cost for each
mapped benchmark. The renovation rate at each generation was
10%.

Figure 5 shows the fitness cost for each 100 hundreds
generations by using the crossover presented in Section 3.1,
based on set of PE. Although the random characteristics, the
best architectures have same common features. A more detailed
statistics analyze is needed, however preliminary results point
out architecture with local connections (eg.: i+1 or j-1) and hop
connections (eg.: i+3, j-4). For all architectures, each PE has a
local set of eight neighbors, and two directed connection for
each neighbors.

Figure 5 – Genetic Evolution for 100 generations.

5. CONCLUSIONS
This paper presents a design exploration environment for
reconfigurable, coarse-grained array architectures. Particularly,
results achieved for this preliminary evaluation of a number of
architectures with different routing topologies have been shown.
Those results clearly point out the capability of our approach to
automatically explore different design characteristics, in few
hours. Short term plans include more depth statistics analyzes,
crossover and fitness improvements, Simulating Annealing and
other optimization techniques to explore the best architecture
generated by the GA approach.

6. REFERENCES

[1] Hartenstein, R. “A Decade of Reconfigurable Computing: a
Visionary Retrospective”, DATE, 2001. Munich, Germany,
2001.

[2] Bossuet, L.; Gogniat, G.; Philippe, J. “Fast Design Space
Exploration Method for Reconfigurable Architectures”, The
International Conference on Engineering of Reconfigurable
Systems and Algorithm, ERSA’03, Las Vegas, USA, 2003.

[3] Bansal, N.; Gupta, S.; Dutt, N.; Nicolau, A.; Gupta, R.
“Network Topology Exploration of Mesh-Based Coarse-Grain
Reconfigurable Architectures”, DATE ’04: Proceedings of the
Conference on Design, Automation and Test in Europe,

[4] Hartenstein, R.; Herz, M.; Hoffmann, T.; Nageldinger, U.
“KressArray Xplorer: a new cad environment to optimize
reconfigurable datapath array”, In: Proceeding of the 2000
conference on Asia South Pacific design automation 2000.

[5] Ferreira, R.; Garcia, A.; Teixeira, T.; Cardoso, J.. “A
Polynomial Placement Algorithm for Data Driven Coarse-
Grained Reconfigurable Architectures”, In International
Symposium on VLSI, pages 61-66, IEEE Computer Society,
Los Alamitos, CA, USA, 2007

	Automatic ARCHITECTURE generation for Coarse-Grained Reconfigurable ARRAY
	Abstract

