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ABSTRACT

Coarse-grained  reconfigurable  computing  architectures  vary 
widely  in  the  number  and  characteristics  of  the  processing 
elements  and routing  topologies  used.  This  paper  proposes  a 
design  space  exploration  able  to  generate  automatically 
different coarse-grained reconfigurable array architectures. The 
achieved experimental results  show that  our  approach  can be 
useful to evaluate a large set of interconnect topologies as far as 
coarse-grained  reconfigurable  computing  architectures  are 
concerned.

1. INTRODUCTION

Coarse-grained architectures appears as a more scalable solution 
than fine-grained architectures (e.g: FPGA) for reconfigurable 
hardware, and become increasingly important in recent years [1, 
2,  3].  This  approach  reduces  the  configuration  time  and 
complexity, as well placement  and routing problem size,  and 
design and synthesis time. However, many array architectures 
seem  to  be  designed  without  strong  evidences  for  the 
architectural decisions taken. Remarkably the work presented in 
[4]  has  been  one of  the  few exceptions  which addressed  the 
exploration of architectural features. Our approach propose an 
environment to generate and to evaluate a wide number of local 
interconnection  patterns.  These  local  patterns  are  scalable, 
which  is  fundamental  to  take  advantages  of  new  silicon 
technology advances.

Our  approach  is  based  on  genetic  algorithm  (GA) 
optimization technique to explore the whole design space. A set 
of architecture is taken as initial population, and each GA step 
creates new architectures during the crossover operation and the 
worst  architectures  are  removed  from  the  population.  The 
selective fitness function is calculated as to be proportional to 
the  average routing  cost  of  a  set  of DSP kernel  benchmarks 
mapped on each architecture. Figure 1 shows a block diagram 
of our approach.

Figure 1 – Design Exploration Environment
The rest  of this  paper  is  structured  as follows. Section  2 

describes the initial population composition. Section 3 presents 
two approaches to represent an architecture as an individual and 
the  crossover  operation.  Section  4  shows  the  experimental 
results. Finally, the conclusions and ongoing work are presented 
in Section 5.

2. INITIAL POPULATION

This work consider only 2D array architectures. However, our 
architecture model is a graph and can handle a n-dimensional 
architectures.  Each  architecture  is  composed  by  a  set  of 
Processor Elements (PE),  for example, ALU, MUX, counters, 
memory  cells,  etc.  and  a  interconnection  network.  The 
interconnection network is composed by a set direct connection 
between two PE's. Let us consider that each PE has an unique 
ID number. This number could be the array line and column 
address.  For  instance,  a  PE(i,j)  has  a  direct  connection  to  a 
PE(i+1,j)  in  a  Grid  Interconnection  Network.  The  set  of 
architecture  used  to  build  the  initial  population  consist  on  a 
selection  of  most  used  architectures  for  coarse-grained  and 
random  architectures.  In  addition,  we  propose  to  taken  into 
account  a set  of bit-operation based architectures.  This set  is 
similar to multi-stage interconnection of SIMD architectures. 

The coarse-grained architecture  set  is  composed by Grid, 
Hexagonal,  Octal  and  N-Hop  interconnection  local  patterns. 
The random architecture set is generated by using random local 
connection  for  each  PE.  The  bit  operation  set  is  created  by 
using local patterns mixed to bit based pattern like hypercube, 
shuffle-exchange, butterfly, baseline,  etc. For instance, a cube 
pattern can be generated a local connection for the PE(i,j)  by 
using inverting a bit on line address. Let us consider the PE(4,5) 
or PE(100,101) in binary. A cube based connection on bit 2 will 
interconnect PE(100,101) to PE(000,101) or PE(0,5).

3. AUTOMATIC ARCHITECTURE GENERATION

We propose two approaches to represent an architecture as an 
individual in GA. The first approach is based on PE set or node. 
The second approach is based on a local PE interconnect set. 
Let us consider a NxM array architecture, where N and M are 
the line and column number, respectively.

3.1 PE SET APPROACH
A architecture  can  be  modeled  as  a  set  of  PE.  Each  PE  is 
defined by its ID and a local connection set. Let us consider the 
two architectures in shown in Figure 2(a), where each PE has 2 
output connections. In the first architecture, each PE has a line 
connection  and  a  column  connection.  For  the  second 
architecture,  each PE has  a diagonal  connection  and  either  a 
line  or  a  column  connection.  The  architecture  can  be 
represented  as  one-dimensional  vector,  where  the  position  i 
stores the set of local output connection from the PE i. Let us 
consider the vector A and B in Figure 2(b), which represent the 
two  architectures  in  shown  in  Figure  2(a).  The  genetic 
algorithm will create new architectures by applying a crossover 
operation on Individual A and B. Suppose the vector cut-point 
at position 2. Two new architectures will be generated as shown 
in Figure 2(d). The first one has the PE 1 and 2 from A and PE 
3 and 4 from B. Each PE brings its output connections to the 
new architecture.



Figure 2 – PE Set Approach

3.2 LOCAL INTERCONNECT APPROACH
Let us consider homogeneous architectures, where a PE has the 
same interconnect set. Let us consider the architecture in shown 
in Figure 3(a), where each PE has 4 output connections in line 
and  column  directions.  This  architecture  is  modeled  by  the 
vector  shown  at  the  top  of  Figure  3(c).  Each  output  has  a 
pattern in function of its line and column address, where we use 
i as the line number and j as the column number. For instance, 
the output 1 is a function of i-1, that is, the output is connected 
to previous line and same column. Figure 3(b) shows another 
architecture  which  local  set  is  shown  in  Figure  3(c).  The 
crossover operator selects a cut-point in local set vector and two 
new local sets are generated. Figure 3(d-f) shows the result of 
crossover  operation  at  cut-point  3  for  the  architectures 
displayed in Figure 3(a-c).

Figure 3 – LOCAL INTERCONNECT APPROACH

4. EXPERIMENTAL RESULTS

The current  prototype environment has been used to evaluate 
the set of architectures by mapping a set of benchmarks on each 
array architectures. The mapping tool presented in [5] has been 
used.  The  set  of  benchmarks  includes  the  following  DSP 
algorithms:  FIR,  CPLX,  FDCT,  Paeth,  FilterRGB and  SNN. 
FIR is a 1-D finite-impulse response filter (examples with 16 
and 64 of taps are used). CPLX is a FIR filter using complex 
arithmetic.  FDCT  is  a  fast  discrete  cosine  transform 
implementation. Paeth is the PNG (Portable Network Graphics) 
Paeth  encoding routine.  The Filter  RGB is an image filter to 
highlight an image by brightening or darkening the pixels in the 
images, SNN is a symmetric nearest neighbor image filter.

The initial architecture set has 100 individuals, where 60% 
was  composed  by  regular  architectures,  40%  by  random 
architectures.  The genetic algorithm has  been runner  for  100 

generations. The fitness cost function of each architecture has 
been calculated as the average routing connection cost for each 
mapped benchmark. The renovation rate at each generation was 
10%.

Figure  5  shows  the  fitness  cost  for  each  100  hundreds 
generations  by using  the  crossover  presented  in  Section  3.1, 
based on set  of PE.  Although the  random characteristics,  the 
best architectures have same common features. A more detailed 
statistics analyze is needed,  however preliminary results point 
out architecture with local connections (eg.: i+1 or j-1) and hop 
connections (eg.: i+3, j-4). For all architectures, each PE has a 
local  set  of eight  neighbors,  and two directed  connection  for 
each neighbors.

Figure 5 – Genetic Evolution for 100 generations.

5. CONCLUSIONS
This  paper  presents  a  design  exploration  environment  for 
reconfigurable,  coarse-grained array architectures. Particularly, 
results achieved for this preliminary evaluation of a number of 
architectures with different routing topologies have been shown. 
Those results clearly point out the capability of our approach to 
automatically  explore  different  design  characteristics,  in  few 
hours. Short term plans include more depth statistics analyzes, 
crossover and fitness improvements, Simulating Annealing and 
other  optimization techniques  to  explore the  best  architecture 
generated by the GA approach.
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