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ABSTRACT 

 

Here we present a pipelined implementation of 8 point 

radix-2 time decimation FFT algorithm to solve the 

Discrete Fourier Transform (DFT). The main goals of this 

paper are to discuss this FFT algorithm and design a 

digital circuit that leads to its solving. The project 

documentation consists in a datapath, an ASM flowchart 

and a finite state machine. Thus, software simulation can 

provide the DFT calculus in 52 clock cycles and one 

butterfly in 4 clock cycles. 

 

1. INTRODUCTION 

 

The FFT (Fast Fourier Transform) is used in digital 

systems, allowing a fast DFT calculation. Many devices 

that use digital signals (such as digital cameras, ADSL 

modems, mp3 players) have specific modules to make 

this calculation. With the advance of these systems we 

need dedicated hardware circuits that can even more solve 

that transform. 

There are some ways to calculate the DFT, such as 

solving simultaneous linear equations or the correlation 

method. The Fast Fourier Transform (FFT) is another 

method for calculating the DFT. While it produces the 

same result as the other approaches, it is incredibly more 

efficient, often reducing the computation time by 

hundreds [2]. 

Thus, FFT is an efficient algorithm to compute the 

DFT and IDFT (inverse). The FFT is of great importance 

to a wide variety of applications, from digital signal 

processing and solving partial differential equations to 

algorithms for quickly multiplying large integers [1]. 

On the other hand, the development of embebed 

system has resulted in a tremendous potential for 

designing dedicated hardware for FFT calculus. This 

paper shows an algorithm project and a hardware 

implementation. Our approach uses 8 point radix-2 time 

decimation FFT. The algorithm has been coded and 

simulated in Scilab® [3]. After that, the circuit has been 

coded in VHDL and simulated in ModelSim®. 

 

2. OUR FFT APROACH 

 

The FFT operates in three steps. First it decomposes 

an N point time domain signal into N time domain 

signals, each one composed of a single point. The second 

step is to calculate the N frequency spectra corresponding 

to these N time domain signals. Lastly, the N spectra are 

synthesized into a single frequency spectrum [2]. 

The first algorithm step can be greatly simplified. The 

decomposition is nothing more than a reordering of the 

samples in the signal. The Figures 1 and 2 shows this 

process called Bit Reversal. The second step is also very 

simple. The frequency spectrum of 1 point signal is equal 

to itself. This means that nothing is required to do this 

step [3].  

 

 
Figure 1 - 8-point time domain decomposing. 

 

 
Figure 2 – Bit Reversal. 

 

Now we describe the last computational step, the most 

difficult one. This step is to combine the N frequency 

spectra in the exact reverse order that the time domain 

decomposition took place. This is where the algorithm 

gets confused. Unfortunately, the bit reversal shortcut is 

not applicable, and we must go back one stage at a time. 

In the first stage, 8 frequency spectra (1 point each) are 

synthesized into 4 frequency spectra (2 points each). In 

the second stage, the 4 frequency spectra (2 points each) 

are synthesized into 2 frequency spectra (4 points each), 

and the last stage results are the output of the FFT, a 8 

point frequency spectrum.  

To synthesize the frequency spectra we introduce the 

simple flow diagram called butterfly (Figure 3). The 

butterfly is the basic computational element of the FFT 

which transforms two complex points into two other 

complex points. The equations below show the butterfly 

calculus: 
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Substituting and separating in real part and imaginary 

part: 
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Figure 3 – Butterfly. 

 

Thus, 8 point radix-2 time decimation needs 3 stages 

and 12 butterflies to give the output. Table 1 shows all the 

butterflies and the k (twiddle factor) value in each stage.  

 

Table 1 – Butterflies in each stage. 

 

3. EXPERIMENTAL RESULTS 

 

The test and the simulation have been designed in 

Scilab®. We compared the 8 point test vectors of Scilab® 

FFT functions with our own FFT script coded in Scilab® 

language. Table 2 gives an overview of the results in each 

stage using our FFT script.  We show in this table the 

address map using 16 words. The first eight are used to 

allocate the real numbers and the last ones to allocate the 

imaginary numbers.  

 

4. HARDWARE IMPLEMENTATION 

 

We designed the FFT hardware using datapath and 

control unit. Our circuit uses 8 registers, 9 counters, 1 

comparator (4 bits), 12  multiplexers, 4 demultiplexers, 1 

adder (8 bits),  2 adders (32 bits), 1 multiplicator (32 

bits), 1 RAM memory (16 words x. 32 bits), 1 ROM 

memory (8 words x. 32 bits). Figure 4 describes the 

butterfly architectures design. 

 The RAM memory needs 16 words (8 to the real part 

and other 8 to the imaginary part). The same memory 

positions are used for the input and output. This efficient 

use of memory is important for designing fast hardware to 

calculate the FFT. The term in-place computation is used 

to describe this memory usage. The ROM memory stores 

the cossine and sine twiddle factor in IEEE 754 standard. 

The FSM module uses 14 cycles.  

Table 3 shows the pipeline approach used. We can 

note that this table shows the simultaneous register 

transfer in the same clock cycle. By the way, the butterfly 

calculation needs 4 clock cycles and 57 cycles to 

complete the FFT calculus. The non pipeline approach 

needs 9 clock cicles to solve the butterfly and 108 cycles 

to give the FFT output. 

 

5. CONCLUSION 

 

The 8 points radix-2 time decimation FFT has been 

designed in VHDL and simulated in ModelSim®. The 

FFT algorithm has been validated in Scilab®. We can 

solve 8 complex points with a FFT in 57 clock cycles and 

one butterfly in 4 cycles. This approach is more than 50% 

efficient than the non pipeline approach. 

The major FFT hardware implementation use 1024 

point [3]. Finally, in future works we intend to design and 

prototyping of a 1024 point radix-2 time decimation FFT 

to compare with other FFT hardware implementations.  
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 Stage 1 Stage 2 Stage 3 

BTF(0,4) K=0 BTF(0,2) K=0 BTF(0,1) K=0 

BTF(1,5) K=0 BTF(1,3) K=0 BTF(2,3) K=2 

BTF(2,6) K=0 BTF(4,6) K=2 BTF(4,5) K=1 

BTF(3,1) K=0 BTF(5,7) K=2 BTF(6,7) K=3 



Address 

(Re ; Im) 

Input 

(Re ; Im)  

Output  Stage 1 

(Re ; Im) 

Output Stage 2 

(Re ; Im) 

Output Stage 3 

(Re ; Im) 

Bit Reversal 

(Re ; Im) 

0000 ; 1000 -1 ; 0 -3 ; 0 -2.5 ; 0 0 ; 0 0 ; 0 

0001 ; 1001 1 ; 0 -0.5 ; 0 2.5 ; 0 -5 ; 0 2.06 ; 4.97 

0010 ; 1010 1.5 ; 0 0.5 ; 0 -3.5 ; 0 -3.5 ; 3.5 -3.5 ; 3.5 

0011 ; 1011 2 ; 0 3 ; 0 -3.5 ; 0 -3.5 ; -3.5 -0,60 ; 0.02 

0100 ; 1100 -2 ; 0 1 ; 0 1 ; 2.5 2.06 ; -4.97 -5 ; 0 

0101 ; 1101 -1.5 ; 0 2.5 ; 0 2,5 ; -1 -0.06 ; -0.02 -0,06 ; -0.02 

0110 ; 1110 -1 ; 0 2.5 ; 0 1 ; 2.5 -0.06 ; 0.02 -3.5 ; -3.5 

0111 ; 1111 1 ; 0 1 ; 0 2.5 ; 1 2.06 ; 4.97 2,06 ; 4.97 

Table 2 – FFT result in each stage using a test vector. 

 

 

Cycle RAM Read ROM Read MUL ADD1 ADD2 RAM Write 

0 RB cos(w) M4<=RB*sin(w) (pre.) S1 <= M1–M2 (pre.) RAO<= RA + S0  (pre.) IBO 

 

1 IB sin(w) M1<=RB*cos(w) S2 <= M3 - M4 (pre.) RBO<= RA - S1 (pre.)  RAO (pre.) 

2 RA cos(w) M2<=IB*sin(w) S3 <= M3 + M4 (pre.) IAO <= IA + S2 (pre.) RBO (pre.) 

3 IA sin(w) M3<=IB*cos(w) S0 <= M1 + M2 IBO <=IA -S3 (pre.) IAO (pre.) 

0 RB (next) cos(w) M4<=RB*sin(w) S1 <= M1 - M2 RAO <=RA+S0  IBO (pre.) 

1 IB (next) sin(w) M1<=RB*cos(w) (next) S2 <= M3 – M4 RBO <=RA – S1 RAO 

2 RA (next) cos(w) M2<=IB*sin(w) (next) S3 <= M3 + M4 IAO <=IA + S2 RBO 

3 IA (next) sin(w) M3<=IB*cos(w) (next) S0 <= M1 + M2 (next) IBO <=IA –S3 IAO 

0 RB (next) cos(w) MUL4<=RB*sin(w) (next) S1 <= M1 - M2 (next) RAO <=RA + S0  (next) IBO 

Table 3 – Register transfer using pipeline. 

 

 

 
 

Figure 4 – Butterfly datapath.

 


