
SET OF DIGITAL CELLS ACCORDING TO LOGIC EQUIVALENCES

1
Marcos F.L. Ledur,

1
Felipe Marranghello,

1
Leomar Rosa Jr.,

2
André Reis,

1
Renato Ribas

1
Instituto de Informática – UFRGS, Porto Alegre, Brazil

2
Nangate Inc., Menlo Park, CA, Herlev, Denmark

{mflledur, fsmarranghello, leomarjr, rpribas@inf.ufrgs.br}, are@nangate.com

ABSTRACT

This paper discusses two linked subjects. The first one

is the concept of equivalence classes of logic functions.

An algorithm that lists all possible classes for logic

functions with a certain number of inputs is conceived.

Secondly, a brief analysis of digital circuits mapped by

library-free and library-based technology mapping tools is

presented, where the main goal is to identify equivalence

classes and occurrence of cells in the circuits generated

by them. To do that, a tool is also proposed. This tool

may reduce the set of cells, grouping functionally

equivalent cells and choosing one to represent the group.

The preliminary results show a strong equivalence

presence in library-free mapping processes.

1. INTRODUCTION

Boolean functions are the pedestal for the design of

modern digital circuits. Basically, any logic function may

be translated in a transistor network that represents it in

an electrical arrangement. These transistor networks

compose the logic gates to form the digital circuit. For a

given number of input variables there is a well-defined

number of functions. This number is given by 2^(2^n),

where n is the number of input variables [1]. According to

this statement, the number of 2-input functions is 16, 3-

input functions is 256, 4-input functions is 65,536, 5-

input functions is 4,294,967,296, and so on. This

exponential relationship turns the search space almost

intractable if many operations need to be repeated in a set

of functions with more than 4-inputs. In order to reduce

the search space, the n-input functions can be classified

into different classes (set of functions). These sets are

known as equivalence classes, and they may be obtained

through input permutation/negation as well as output

negation. P-class, N-class, NP-class, PN-class, and NPN-

class are the possible reduced sets. These sets are

composed by equivalent functions that represent different

logic functions, but that have the same internal transistor

networks arrangements (they are topologically identical).

This approach can be used to implement and to evaluate

logic cells and transistor networks without loss of

generality.

Another important point is related to the technology

mapping strategy. Essentially, technology mapping tools

can be classified in two groups: library-based and library-

free. Library-based tools are the ones that use a

predefined and reduced set of cells to build the digital

circuit. In other words, the circuit will be composed by

logic cells that belong to a fixed library container.

Alternatively, library-free tools are the ones that need an

automatic cell generator to feed the technology mapping

process. In these tools the set of cells that can be used are

much more extensive.

This work proposes two main discussions regarding

classes of functions and technology mapping. First, it

presents an algorithm to identify functions that belong to

the same classes. Second, it presents a mechanism that is

able to identify equivalence and occurrence of logic

functions inside circuits mapped by technology mapping

tools.

The main contribution of this paper is to provide for

the designer a fast and powerful way to analyze the

characteristics and the quality of used cells in the

technology mapping process.

The remaining of this paper is organized as follow.

Section 2 discusses the identification of logic function

classes. Section 3 presents the proposed mechanism to

evaluate the set of cells used to compose the mapped

circuits. Finally, Section 4 presents the conclusions.

2. LOGIC FUNCTION CLASSES

2.1 Logic function

In a truth table, for a certain number of inputs (n),

there are 2^n lines (minterms). Each output consists of

choosing a bit for each minterm. Therefore, there are

2^(2^n) possibilities of outputs. Each one is a boolean

function, a binary number with 2^n bits. For n = 2, e.g.

there are 4 minterms and 16 logic functions, as shown in

Table 1.

Table 1: Some functions for n = 2 inputs.

AB f0 f1 f2 f3 f4 ... f12 f13 f14 f15

00 0 1 0 1 0 ... 0 1 0 1

01 0 0 1 1 0 ... 0 0 1 1

10 0 0 0 0 1 ... 1 1 1 1

11 0 0 0 0 0 ... 1 1 1 1

2.2 Equivalence classes

If n increases, the total space of functions will enlarge

considerably. As mentioned before, in a cell with 3

inputs, the number of possible functions equals to 256,

and for 4 inputs, 65,536. To reduce these possibilities, the

concept of classes of equivalent functions is introduced

[3]. A class is a subset of logically equivalent functions as

a result of a specific operation, or their combination.

A possible operation to obtain equivalent functions is

the permutation of inputs. Table 2 presents an example of

that operation. It is noticed that the minterms 01 and 10

changed the position in both tables. Two functions are

equivalent if for each minterm the output is the same.

Thus, f2 and f4 are equivalent by permutation, and can be

gathered in a P-class.

Another operation to build equivalent functions is the

negation of inputs. In a similar way, Table 3 shows an

example of obtaining an N-class of 4 equivalent functions

(f1, f2, f4 and f8) from this operation.

The last operation here used is the negation of the

output. Table 4 displays and example of this operation.

The three operations can be combined. For instance,

NP-classes are obtained after combining permutation and

negation of inputs. An NP-class may have more functions

than several P- or N-classes. Therefore, the number of

NP-classes is smaller.

There are still PN-classes, where permutation of

inputs and negation of outputs are executed. Finally, the

most reduced group of classes studied is the set of NPN-

classes, where all operations are performed.

Table 2: Two P-equivalent functions.

AB f2 BA f4

00 0 00 0

01 1 10 0

10 0 01 1

11 0 11 0

Table 3: Four N-equivalent functions.

AB f1 BA f2 BA f4 BA f8

00 1 01 0 10 0 11 0

01 0 00 1 11 0 10 0

10 0 11 0 00 1 01 0

11 0 10 0 01 0 00 1

Table 4: Two equivalent functions after output negation.

AB f9 f6

00 1 0

01 0 1

10 0 1

11 1 0

2.2 Finding equivalence classes

The interest of the first part of this work was to list all

classes (P, N, NP or NPN) for a known number of inputs.

To do that, a function of each class was chosen to

represent it. The chosen function was, for convenience,

the lowest function of each class; ‘lowest function’, here,

means the function fk, where k is the smallest value

observed in the class.

Fig. 1 shows a general procedure, in a C-like code, of

the idea described above. Going through all 2^2^n

functions using the variable f, in case the lowest function

of a class is found, it is printed.

The procedure isLowestFun, illustrated in Fig. 1,

should be in agreement with the type of desired operation.

In case it is wanted to know if f is the lowest function

after all possible input permutations, this procedure

resembles that in Fig. 2.

Basically, the lowest function is searched in the main

loop. There are n! different combinations for n inputs. For

each one, the procedure kth_permutation returns a

logic function always obtained from a different

permutation. In each cycle, if the found function is the

lowest at the moment, it is stored in lower. At the end, if

lower is not lower than f, it means that f is the lowest

function of the class.

An example of this reasoning is that of Table 2. There

are only two possible permutations for n = 2. If f = f2, the

result of kth_permutation is f4, and f2 will be

printed. Later, when f equals to f4, a lower function will

be found, obviously f2,, and f4 will not be printed. Hence,

only one function per class is printed, which was the main

goal.

If the goal is to obtain the lowest function of an N-

class, then isLowestFun will be built in a similar way,

but the number of search cycles will be 2^n, and the

search procedure, kth_negation. These changes are

shown in Fig. 3. For n = 2, there are 2^2 = 4 possible

negations of the inputs. According to Table 3 and the

algorithm of Fig. 3, if f equals to f1, f2, f4 or f8, only when

f = f1 the procedure print will be called.

void list(int n) {
 for (int f = 0 ; f < 2^(2^(n)) ; f++)
 if (isLowestFun(f))
 print(f);
}

Figure 1: Listing one function per class.

int isLowestFun(long f) {
 long f' , lower;
 lower = f;
 for (int i = 0 ; i < n! ; i++) {
 f' = kth_permutation(f , i);
 if (f' < lower)
 lower = f';
 }
 if (lower < f)
 return 0;
 else
 return 1;
}

Figure 2: Obtaining P-classes.

int isLowestFun(long f) {
 ...
 for (int i = 0 ; i < 2^n ; i++) {
 f' = kth_negation(f , i);
 if (f' < lower)
 lower = f';
 } ...
}

Figure 3: Changes in isLowestFun procedure for

obtaining N-classes.

Fig. 4 shows the necessary changes in

isLowestFun for the accomplishment of permutation

and negation operations simultaneously. Now the number

of cycles is n! × 2^n.

At last, when the purpose is to find NPN-classes, each

obtained function has to be negated and, in a similar way,

verified if the new function is the lowest one of the whole

class. To do that, some code is added to the procedure of

Fig. 4, resulting in the procedure of Fig. 5. Procedure

neg() returns a logic function replacing 0’s by 1’s, like

it was done in Table 4.

int isLowestFun(long f) {
 ...
 for (int i = 0 ; i < n! ; i++)
 for (int j = 0 ; j < 2^n ; j++) {
 f' = kth_permutation(f , i);
 f' = kth_negation(f' , j);
 if (f' < lower)
 lower = f';
 } ...
}

Figure 4: Obtaining NP-classes.

int isLowestFun(long f) {
 ...
 for (int i = 0 ; i < n! ; i++)
 for (int j = 0 ; j < 2^n ; j++) {
 f' = kth_permutation(f , i);
 f' = kth_negation(f' , j);
 if (f' < lower)
 lower = f';
 if (neg(f') < lower)
 lower = neg(f');
 } ...
}

Figure 5: Changes in isLowestFun procedure for

obtaining NPN-classes.

Some remarks should be made. For simplicity, the

algorithms are more illustrative and less realistic than the

used ones. Improvements are visible and necessary.

Besides, the possible number of logic functions and

results turn then unfeasible for high values of n. The

results were obtained for an n up to 5 inputs, according to

Table 5. They are in agreement with [2].

With the developed algorithms, it is possible to

compare two functions and to verify if they are logically

equivalent, as explained in the next section.

Table 5: Number of inputs vs. number of classes.

of classes
n

of

functions P N NP NPN
2 16 12 7 6 4

3 256 80 46 22 14

4 65.536 3.984 4.336 402 222

5 4.294.967.296 37.333.248 134.281.216 1.228.158 616.126

3. EVALUATION OF SET OF CELLS

The second part of this work was implemented in two

stages. In the first one, a list of cells obtained from a

library-free mapping tool, and defined by their logical

equations, is taken into account. Firstly, these equations

are converted to the format of logic functions (in

hexadecimal). After that, these functions are used as

inputs to a developed tool, called LEVE (Logical

Equivalence VErifier), written in C, which analyzes the

functions, counts the different types of cells and the

occurrence of each one of them, generating a report. In

the second moment, LEVE tool uses the concepts of the

developed algorithms to verify if two or more functions

belong to the same equivalency class. The flow is

presented in Fig. 6.

Figure 6: LEVE tool flow, inputs and outputs.

3.1 Library container evaluation

Technology mapping is a process by which a set of

optimized logic equations is turned into a design

implementation in terms of a cell netlist. A standard cell

technology uses a pre-characterized library, while a

library-free technology uses a virtual library based on on-

the-fly cell generation. SIS [4] is an example of a library-

based tool. On the other hand, ELIS [5] and VIRMA [6]

tools are examples of library-free tools.

A standard cell library is typically restricted to a few

cells. However, the flexibility of the library-free cell

generation may produce several distinct cells. Besides, a

high occurrence of cells can implicate a worse

performance in area and in delay.

3.2 Equivalence in a set of cells

Library-free tools do not explore the fact that several

cell types can own some kind of logic equivalence studied

in the previous section. That approach is useful to reduce

the size of the list of generated cells, choosing one among

the functionally equivalent cells to belong to the final

circuit.

The algorithm for obtaining the class of a function is

shown in Fig. 7. It looks like the one presented in Fig. 2,

with the difference that theLowestFun returns the

lowest function of a class. Here only the permutation

operation is presented, but the other algorithms follow

strictly the same way.

To verify if two or more functions are equivalent the

procedure is the following: given two functions fa and fb,

if theLowestFun returns fk, the three belong to the

same class. The set Ak = {fa , fb} contains, thus,

functionally equivalent cells. This set is increased as new

functions equivalent to fk are found. A specific cell of this

set can be chosen to represent it. Therefore, the number of

different cells used in an implementation can be smaller,

the greater are the sets. For the logical/physical

obtainment of the not chosen cells, it is enough to perform

the necessary operations on the chosen ones.

The limitation of the algorithm is the number of inputs

(n). The greatest difficulty found was the time expensed

in the algorithm execution. For cells of 9 inputs, the

average time to find its NPN-class was of the order of 40

seconds, and for 10 inputs, around 32 minutes. This

happens mainly because the search space (n! × 2^n) is

increased in 2(n+1) when n is incremented. Therefore, the

algorithm was limited for up to 10 inputs.

long theLowestFun(long f) {
 long f' , lowest;
 lowest = f;
 for (int i = 0 ; i < n! ; i++) {
 f' = kth_permutation(f , i);
 if (f' < lowest)
 lowest = f';
 }
 return lowest;
}

Figure 7: Obtaining the lowest function of a class.

3.3 Some results

Table 6 presents the results for a group of well-known

benchmarks. Three circuits were mapped, each one, in

three different tools. The third column shows the total

counting of cells after the mapping. Next, the number of

distinct cells found is presented. The following columns

show the decrease of the on-the-fly generated library after

verification of equivalence classes P, NP and NPN.

Some conclusions can be given by looking the Table

6. First of all, SIS-mapped circuits did not present

permutation equivalences, and in the other tools they

occur often. It happens because library-free processes

may not verify permutations while they analyze the

circuit. Finally, as it was seen to come, NPN verification

returned the most reduced group of cells.

Table 6: LEVE tool results for ISCAS benchmarks.

of cells after

equivalence ISCAS

Circuit

Tech

mapping

tool

of

cells

of

distinct

cells P NP NPN

SIS 174 8 8 8 6

ELIS 162 6 5 5 4 C499

VIRMA 212 23 15 10 9

SIS 346 11 11 11 8

ELIS 244 16 15 13 10 C1908

VIRMA 187 81 57 28 28

SIS 500 34 34 34 24

ELIS 473 46 38 38 23 C3540

VIRMA 545 164 131 69 65

Some aspects should be considered for the

observation of the results. On one hand, permutation is an

operation that does not modify the internal structure of

the circuit, but the decrease in the number of cells is not

so evident. On the other hand, reduction using negations

in inputs and/or in output would add inverters to the

circuit, in spite of a good reduction of cells. It is

necessary to affirm that the eventual inverters were not

considered in the total number of cells.

4. CONCLUSIONS

This paper discussed the equivalence of classes of

logic functions and its use in the context of technology

mapping. Some choices of equivalence were presented,

and choosing one of them depends on what is desired in

the final circuit. Future work will include a better report

generation and an investigation of the best cells to be

chosen to compose the final circuit.

5. REFERENCES

[1] Sasao, Tsutomu. Switching Theory for Logic Synthesis.

Springer, 1st edition. 1999.

[2] M. A. Harrison, “The number of equivalence classes of

Boolean functions under groups containing negation”,

IEEE Trans. Electron. Comput. 12, pp. 559-561, 1963.

[3] V.P. Correia, and A.I. Reis. “Classifying n-Input Boolean

Functions”, VII Workshop IBERCHIP 2001, IWS 2001,

Montevideo, pp. 58, 2001.

[4] E.M. Sentovich, et al., “SIS: A system for sequential

circuit synthesis”, Technical Report No. UCB/ERL

M92/41,

[5] ELIS Home Page http://www.inf.ufrgs.br/lagarto

[6] F.S. Marques et al., “DAG based library-free technology

mapping”, Proceedings of the 17th great lakes symposium

on Great lakes symposium on VLSI, ACM Press, New

York, pp. 293-298, 2007.

