
IPPC: INTELLECTUAL PROPERTY PROCESSOR COMPONENT APPLIED IN 
EMBEDDED COMPUTER SYSTEMS 

 
Alexandre Marques Amaral, Márcio Oliveira S. de Souza e Carlos Augusto P. da Silva Martins 

alexmarques@ieee.org, marciooss@gmail.com, capsm@pucminas.br 
 

Digital and Computational Systems Group (GSDC) 
Graduate Program in Electrical Engineering 

Pontifical Catholic University of Minas Gerais 
 

ABSTRACT 
 

Last years, embedded computer systems (ECS) have 
been evolving in utilization and complexity. The 
processor core design or redesign produce high efforts, 
time and costs. This paper presents the reuse of 
Intellectual Property Processor Component in ECSs, like 
SoCs and MPSoCs, and the main benefits and advantages. 
 

1. INTRODUCTION 
 
Last years, embedded computer systems (ECS) have been 
evolving a lot. Their evolution is due to new requirements 
demanded by current applications and also the 
development of new technologies, like VDSM (Very 
Deep Sub-Micron). Besides, there is a wide range of 
requirements variations that stimulates the design and 
development of a wide range of ECSs, to fit each of the 
requirements [1]. In one extreme of this range there are 
demands for execution of simple operations, low power 
consumption and performance is not critical (a System-
on-Chip applied in mobile applications). In the other 
extreme of the range there are demands for execution of 
complex operations, high computational performance and 
power consumption constraints are not critical (a high-
performance Multi-Processor- System-on-Chip). 

Considering the wide range of embedded computer 
systems and their requirements, the processor, used as 
processing component, may be designed or redesigned 
during the project of the ECS. This includes the 
architecture levels (ISA and microarchitecture) and the 
implementation, requiring a high expertise in 
microprocessor design, development, implementation and 
test processes, increasing the project costs. Furthermore, 
it usually demands a very hard effort and produces a 
considerable increasing of the time-to-market. Therefore, 
the component design or redesign generates high efforts, 
time and costs in ECS design process [2]. 

Therefore, considering the importance of processor 
components for embedded computer systems and its 
design and redesign problems, this research proposed an 
Intellectual Property Processor Component (IPPC) with a 
Reduced Instruction-Set (RISC). Hence, the proposed 
IPPC can be reused in different ECS designs, with 
independency of scalability requirements and 
implementation technology. The IPs reuse brings lots of 
advantages, like reduction of design efforts, time and 

costs [1,2]. Therefore, the research hypotheses are these 
advantages of IP processor reuse in different ECS 
designs. Furthermore, the goals are the design and 
development of IPPC architecture, implementation and its 
reuse in different ECSs, like SoCs and MPSoCs. 
 

2. IPPC: IP PROCESSOR COMPONENT 
 
The IP processor component (IPPC) has general purpose 
architecture, with a reduced instruction-set (RISC), 
parameterized word bit-width, hardware instruction 
decoder (microcode absence), register-based data 
manipulation, Harvard memory model and 
LOAD/STORE memory access. Thus, the IPPC was 
designed to be the processing component of ECSs applied 
in applications with integer basic operations. 

As described in the literature [3], the IPPC 
architecture was designed through the development of 
two architectural levels: Instruction-Set Architecture 
(ISA) and Microarchitecture. The following subsections 
present the architectural levels and the IPPC reuse. 
 
2.1. Instruction-Set Architecture 
 
The ISA was designed through the definition of the basic 
operations, the instruction formats, the kinds of operand 
addressing and the instructions and their operation code 
(op-code). The instruction-set was divided in three 
classes: arithmetic-logic, branches and data manipulation. 
Table 1 presents some instructions of the IPPC ISA, and 
their classes, names, assembly codes and type. 

Besides the class-based classification, the instructions 
were classified according to their types, as presented in 
table 2. These types were created according to the 
operand addressing and the amount of addressed 
registers. Due to design simplification, in this research, 
two types of operand addressing were applied: direct and 
immediate [3]. Hence, the instructions can be classified in 
seven types: 3R, 2RI, 2R, 1RI, 1R, NRI and NR. 
 

Table 1. Some IPPC instructions 
Class Instruction Assembly Type 

Immediate AND ANDI Rx,Ry,kk 2RI 
Direct OR ORR Rx,Ry,Rz 3R Arithmetic-Logic 

Direct NOT NOTR Rx,Ry 2R 
Unconditional branch JUMP aaaaaa NRI 

Branch 
Branch if Carry JMC aaaaaa NRI 

Immediate Move MOVI Rx,kkkk 1RI Data 
manipulation Input INPUT Rx 1R 
Other types End Execution Halt NR 



Table 2. IPPC Instruction Types 
Type 8 Bits 8 Bits 8 Bits 8 Bits 

3R OP code Reg. 1 (Target) 
Reg. 2 

(Source 1) 
Const. 

(Source 2) 
2RI OP code Reg. 1 (Target) Reg. 2 

(Source 1) 
Const. 

(Source 2) 

2R OP code Reg. 1 (Target) 
Reg. 2 

(Source 1) 
----- 

1RI OP code Reg. 1 (Target) Const. (Source 1) 

1R OP code 
Reg. 1 (Target e 

Source 1) 
----- 

NRI OP code Const. (Source 1) 
NR OP code ----- 

 
2.2. Microarchitecture 
 
The microarchitecture level, that executes the instructions 
described in ISA level, was designed and developed in a 
gradual and structural methodology. This means that 
several sub-microarchitectures were designed, and each of 
them is specialized in executing one class of instruction. 
Thus, three sub-microarchitectures were designed and 
developed. The first is to execute arithmetic-logic 
instructions; the second is to execute branch instructions 
and the third is to execute data manipulation instructions. 
Finally, these sub-microarchitectures were merged, using 
multiplexers and demultiplexers, to compose the complete 
microarchitecture (figure 1). This gradual design 
methodology is described in [3], and is applied 
throughout MIPS (reduced release) project. 

The IPPC has monocycle microarchitecture, due to 
design simplification and also to support a further 
pipeline implementation, if necessary. This 
microarchitecture is composed of datapath and 
controlpath. The datapath blocks are enhanced in figure 1, 
while the controlpath blocks are not. The main datapath 
functional blocks are: Arithmetic-Logic Unit (ALU or 
ULA in figure 1), Register File (BR) and Data Memory 
(MD). And the main controlpath blocks are: Control Unit 
(UC), Program Counter (PC and Som) and Instruction 
Memory (MP). The block diagram of IPPC 
microarchitecture is presented in figure 1. 

 
Figure 1. Block diagram of IPPC microarchitecture. 

 
The Arithmetic-Logic Unit (ALU) was designed and 

developed as a parameterized word-length ripple carry 
structure. Although ripple carries are not applied 
anymore, this simplification is due to the ALU design was 

not the main goal of this research. Among the future 
works, is the development of a more efficient ALU. 

The register file is the highest level of data storage. It 
is able to execute two reads simultaneously. The lowest 
level of data storage is the Data Memory (MD). Both 
levels also have parameterized word-lengths. Others 
storage blocks are Zero (Z) and Carry (C). These blocks 
are to store the state of ALU’s results, storing high logic 
level whenever these results has a carry or is equal to 
zero. The others datapath blocks are multiplexers and 
demultiplexers to correctly connect functional blocks. 

As presented in figure 1, the instruction control and 
decoding are centralized, performed by a unique 
functional block, the Control Unit (UC). It generates the 
control and synchronization signals. The centralized 
implementation is due to design simplification, and it also 
targets a further pipeline implementation [3]. The Control 
Unit was designed as a Finite State Machine (FSM), as 
presented in figure 2. This FSM has the usual states 
presented in the literature [3]: Instruction Fetch 
(IFETCH), Decode (DFETCH), Execute (EXE), Write 
Back (WB) and Idle (IDLE). The datapath operation of 
these states is similar to the operation presented in [3]. 
 

 
Figure 2. IPPC Control Unit Finite State Machine. 

 
In IFETCH state, the next instruction to be executed is 

fetched from the Instruction Memory (MP), the 
Instruction Register (R. Inst.) is loaded, that transmits it to 
the UC. In DFETCH state, the UC generates the 
addresses ID1 and ID2 for the registers to be read. In 
EXE state, the multiplexers and demultiplexers are 
enabled and their selection inputs are asserted, the ALU 
and MD are enabled depending on the executed 
instruction. In WB state, the UC enables the BR or MD 
and feeds their write address inputs, besides the clock 
synchronization generation. In IDLE state, the execution 
is finished or it is waiting an input signal to continue the 
execution from the instruction it was interrupted. 

 
2.3. IPPC reuse in embedded computer systems 
 
The IPPC was described in VHDL (Very High Speed 
Integrated Circuits Hardware Description Language) in a 
structural manner. The description developed represents 
its microarchitecture with each block of figure 1 
described as a component. Furthermore, this description 
supports synthesis and implementation in different 
platforms, including FPGAs. This enables the IP 
processor component to be used and reused in different 



systemic projects. In addition, the parameterized feature 
of the architecture levels (ISA and microarchitecture) is 
supported by the developed VHDL description. This 
reduces the efforts for the IP fitting into the system. 

After the verification of the IPPC functionalities and 
behaviors in stand-alone executions [4], the developed 
VHDL code was wrapped into VHDL descriptions of 
SoCs and MPSoCs. The developed Systems-on-Chip 
(SoCs) and Multi-Processor-Systems-on-Chip (MPSoCs) 
are application-specific integrated systems. Two different 
applications were chosen, which are: a digital controller 
and a digital image filter. The controller processing core 
is called Reconfigurable Electronic Control Unit (RECU) 
and was the second place in Xilinx Student Contest 2005. 
The filter processing core is called Image Convolution 
Circuit (ICC) and its architecture and its implementation 
was published in [5,6]. These cores were integrated with 
instances of the IPPC to build integrated systems. Figure 
3 presents a parameterized block diagram that represents 
the organization of developed SoCs and MPSoCs. 
 

 
Figure 3. MPSoC organization. 

 
The SoC organization is composed of a unique 

instance of the IPPC and one or more instances of the 
application-specific core (RECU). The MPSoC 
organization has N IPPC and M application-specific core 
instances (ICC). This possibility of varying the number of 
IPPC and application-specific core instances makes the 
organization parameterized, supporting implementation of 
either a SoC or an MPSoC. The parameters are defined 
by the system developer, considering tradeoffs between 
the functional and non-functional application 
requirements and the implementation costs. 

The IPPC instances can work as a data source for the 
application-specific processing core or even parallel 
processing core executing an application-specific 
software. All the implementations developed during this 
research have their IPPC instances as a data source for the 
application-specific cores. 

Moreover, both organizations have additional blocks 
of interconnection logic, called Interconnection Element 
(IE) Input Interface and Output Interface. These blocks 
can be composed of multiplexers and demultiplexers, a 
crossbar switch, or being a complete Network-on-a-Chip 
(NoC) [7]. Using multiplexers and demultiplexers the 
interface blocks require less silicon resources, although 
their connections may be time-multiplexed. Otherwise, 
using a crossbar switch, the connections may be full-time, 
although the interface blocks require more silicon 

resources. The interface blocks are implemented as 
multiplexers and demultiplexers. However, a work in 
progress is to implement them using the crossbar switch 
proposed in [8]. 

Different combinations of IPPC and application-
specific core instances, composing VHDL descriptions of 
different SoCs and MPSoCs were synthesized, mapped, 
placed and routed, targeting FPGAs. However, only 
results of the RECU mono-processed SoCs and the ICC 
multi-processed SoCs were presented in this paper. The 
target FPGAs are a Spartan-3 XC3S200-4ft256 and a 
Virtex-II XC2V1500-5ff896, both produced by Xilinx. 
These devices were chosen since they are soldered on 
available development boards in Digital and 
Computational Systems Laboratory (LSDC). 
 

3. EXPERIMENTAL RESULTS 
 
This section presents the results obtained from the 
implemented IPPC instance applied in the developed SoC 
and MPSoC implementations. These are results of 
performance, FPGA resources and power consumption. 

Figure 4 presents the response times that a 512x512 
image takes to be filtered, with different convolution 
kernels, executed in ICC-based implementations. Each 
implementation’s maximum operation frequency is 
presented inside parenthesis. These maximum frequencies 
were obtained from the Xilinx ISE Timing Analyzer tool. 
 

2,
08

2,
06

2,
05

2,
03

2,
02

2,
00

1,
98

0,
40

1,
16

2,
2

9

3,
80

5
,6

8

7,
94

10
,5

8

2,
54

2,
52

2,
50

2
,4

9

2,
48

2,
4

6

2,
44

2,
10

2,
08

2,
07

2,
06

2,
05

2,
03

2,
02

1,
06

1,
0

5

1,
04

1,
04

1,
04

1,
03

1,
02

0,
82

0
,8

1

0,
80

0,
80

0,
80

0,
7

9

0,
78

0,00

2,00

4,00

6,00

8,00

10,00

12,00

3x3 5x5 7x7 9x9 11x11 13x13 15x15
Kernel Size

T
im

e 
(m

s)

ICC (125 MHz) Pentium IV (3.8 GHz)

2-IPPC_1-ICC_Spartan (51.14 MHz) 2-IPPC_1-ICC_Virtex (61.94 MHz)

4-IPPC_2-ICC_Virtex (61.36 MHz) 6-IPPC_3-ICC_Virtex (53.11 MHz)

 
Figure 4. Response times of image convolution in MPSoCs. 

 
Analyzing figure 4, it is noticed that although Pentium 

IV performs the smaller kernel filtering operations with 
excellent performance, its sequential execution times 
increase a lot with the kernel size increasing. Otherwise, 
the execution using ICC-based systems does not take 
more pieces of time whenever the kernel size increases. 
This is due to the parallel architecture and implementation 
of the ICC core [5,6]. The ICC supports spatial and 
temporal parallelism in each kernel iteration processing. 
Despite, figure 4 presents a little decreasing of the ICC-
based systems response times with the increasing of the 
kernel size. This is due to the absence of image border 
processing. In addition, the response times is decreased 
with the number of ICC and IPPC instances increasing 
and also with the upgrading to a more evolved target 
FPGA family. The former is due to the increasing of 

 

Input Interface 

O
utput Interface 

IPPC1 IPPC2 IPPCN 

RECU1 
or 

ICC1 

... 

... 

... 

... 
RECU2 

or 
ICC2 

RECUM 
or 

ICCM 

IE 



parallelism exploration and the speed-ups are 
approximately proportional to the increasing of ICC 
instances. The latter is due to more efficient FPGA 
resources, providing systems more optimized and with 
higher maximum operation frequency. 

Table 3 presents the percentage of occupied FPGA 
resources for different implemented systems. These 
systems differ in the number of IPPC instances, the type 
and the number of application-specific core instances and 
the target FPGA. Analyzing table 3, it is observed that 
RECU-based systems fit both target FPGAs. Otherwise, 
some ICC-based systems do not fit the Spartan-3 device. 
This occurs with 2-IPPC_1-ICC_Spartan system, which 
overmapped the amount of slices and block RAMs. This 
implies in overmapping of ICC-based systems with more 
than two IPPCs. Table 3 also presents the high amount of 
resources of the Virtex-II FPGA. This is showed by the 
configuration of an MPSoC with six IPPC and three ICC 
instances, and the verification of unused resources. 

 
Table 3. Percentage of occupied FPGA resources. 

System Regs Slices LUT I/Os BRAM 
1-IPPC_1-RECU_Spartan 14.6% 57.8% 37.8% 42.8% 16.7% 
1-IPPC_1-RECU_Virtex 3.7% 14.5% 9.5% 14.0% 4.2% 
2-IPPC_1-RECU_Spartan 27.9% 71.7% 54.5% 43.4% 33.3% 
2-IPPC_1-RECU_Virtex 7.0% 27.5% 17.7% 14.2% 8.3% 
2-IPPC_1-ICC_Spartan 31.3% 115.6% 74.4% 43.4% 108.3% 
2-IPPC_1-ICC_Virtex 7.8% 29.2% 18.6% 14.2% 27.1% 
4-IPPC_2-ICC_Virtex 15.6% 59.5% 38.3% 15.3% 54.2% 
6-IPPC_3-ICC_Virtex 23.4% 88.8% 56.6% 16.5% 81.3% 

 

 
Figure 5. Implemented 6-IPPC_3-ICC system. 

 
Figure 5 presents the 6-IPPC_3-ICC system 

implemented on Virtex-II FPGA. This figure was 
generated by the Xilinx FPGA Editor and has details of 
where the logic of each component and the routed signals 
are allocated. Applying area constraints during the 
implementation process enables the component 
identification among the whole system, as presented in 
figure 5. The area constraints were defined considering 
communication efficiency, attempting delay reductions. 

According to the Xilinx Xpower tool estimation, the 
implementations using the Spartan-3 FPGA dissipate 
about 37 milliwatts, while those using the Virtex-II 
dissipate about 359 milliwatts. This verifies that for an 
application that requires low power dissipation, devices 
with less resources and lower cost may be worthier. 

Considering the results and regardless of performance 
and scalability constraints, it is recommended to 
implement these SoCs using the Spartan-3 device, 
reducing costs and power consumption. Furthermore, the 

IPPC reuse in different SoC and MPSoC provides 
reduction of the design efforts, time and costs, since the 
developed systems were designed, with IPPC, ICC and 
RECU reuse, in three weeks using one FPGAs. 
 

4. CONCLUSIONS 
 
The presented results verified the benefits and advantages 
of the proposed IPPC reused in systemic embedded 
computer systems (ECS). This is reached by utilization of 
IP reuse methodologies [2]. Therefore, the goals were 
reached and the hypotheses were proved. 

Furthermore, the main contribution of this work is the 
design and development of an IP Processor Component 
(IPPC) with independency of implementation technology, 
since it is described in VHDL. Besides, the IPPC reuse in 
embedded computer systems (SoCs and MPSoCs) is also 
a contribution. Therefore, reusing the IPPC in systemic 
designs of ECSs may generate benefits for the academic, 
industrial and or commercial communities. 

This research was developed simultaneously with the 
graduation conclusion project in Electronics and 
Telecommunication Engineering [4]. 

Some future works are: development of a more 
efficient ALU for IPPC; integration of the reconfigurable 
crossbar switch [8] as the communication interfaces; 
design and development of a Reconfigurable IP Processor 
Component (RIPPC) and its integration in the developed 
SoCs and MPSoCs. 
 

5. ACKNOWLEDGMENTS 
This work was developed with the CNPq (National Counsel of 
Technological and Scientific Development - Brazil) support. 
 

6. REFERENCES 
 
[1] W. Wolf, “Embedded Computer Architectures in the MPSoC Age”. 
32th International Symposium on Computer Architecture, IEEE 
Computer Society. Madison, 2005. 
[2] S. Sarkar, G. Subash Chandar, S. Shinde. “Effective IP Reuse for 
High Quality SoC Design”. IEEE International SoC Conference. pp. 
217-224. 2005. 
[3] D.A. Patterson, J. L. Hennessy, Computer Organization and Design: 
the Hardware/Software Interface. 3rd edition Morgan Kaufmann 
Publishers, San Francisco, 2004. 
[4] A.M. Amaral, R2NPC (Reconfigurable RISC Network Processor 
Core): Design and Implementation of the R2NP Network Processor 
Core. Graduation Conclusion Project Report in Electronics and 
Telecommunication Engineering. Pontifical Catholic University of 
Minas Gerais. 2006 (in portuguese). 
[5] A.M. Amaral, C.A.P.S. Martins, Image Convolution Circuit: 
Parallel and Parameterized Architecture and FPGA Implementation. III 
Student Forum on Microelectronics, SBC, Florianópolis, 2005. 
[6] A.M. Amaral, M.B.Carvalho, C.A.P.S. Martins, Parallel and 
Parameterized Architecture for Image Convolution. Workshop on High 
Performance Computational Systems, SBC, O. Preto, pp. 195-198, 
2006 (in portuguese). 
[7] C.A. Zeferino, M.E. Kreutz, L. Carro, A.A. Susin, A Study on 
Communication Issues for Systems-on-Chip. 15th Symposium on 
integrated Circuits and Systems Design. (SBCCI). IEEE Computer 
Society, Washington, pp. 121-126. 2002. 
[8] H.C. Freitas, M.B. Carvalho, A.M. Amaral et al. Reconfigurable 
Crossbar Switch Architecture for Network Processors. IEEE 
International Symposium on Circuits and Systems (ISCAS), IEEE CAS 
Society, Kos, pp. 42-45, 2006. 

IPPC1 

ICC 3 
ICC 2 

ICC 1 
Input Interface 

IPPC3 

IPPC2 

IPPC4 

IPPC5 IPPC6 

Output Interface 


