
COMBINATIONAL BLOCK GENERATION FOR LIBRARY VALIDATION

BENCHMARK CIRCUIT

1
Mateus V. Gomes,

1
Simone Bavaresco,

2
André I. Reis,

1
Renato P. Ribas

1
Instituto de Informática – UFRGS, Porto Alegre, Brazil

2Nangate Inc., Menlo Park, CA, Herlev, Denmark

{mvngomes, simoneb, rpribas@inf.ufrgs.br}, are@nangate.com

ABSTRACT

The implementation of combinational blocks used in a

benchmark for validation of digital cell libraries, applied

in standard cell IC design methodology, is proposed in

this work. The automatic generation of this kind of circuit

becomes is quite important when library-free technology

mapping is addressed due to the fact that it is based on

virtual libraries, whose original cells are not previously

designed and physically verified. This work describes the

requirements and techniques used to generate the

benchmark combinational blocks.

1. INTRODUCTION

The approach to validate library cells proposed in this

work is based on standard cell IC design methodology

which represents nowadays the most applied strategy to

ASIC design, where the library cells are reused for a great

variety of circuits and applications. In the standard cell

methodology, the library gates used by a technology

mapper can be specified using electrical parameters (also

known as library-based mapping) or proprieties such as

the number of inputs and series/parallel devices (also

known as library-free mapping). The concept of library-

free design is based on using a virtual library available

through a layout generator instead of using a set of pre-

designed cells, like in library-based design. The set of

available cells is given, for instance, by a user-defined

constraint in the number of transistors in series. As the

cells are generated on-the-fly, a virtual library contains a

great number of poorly characterized cells when

compared to pre-designed standard cell libraries [1][2]. It

means that such virtual libraries are, in fact, used at the

first time together with the target ASIC.

The validation and physical characterization of the set

of cells, included in a library, are usually done through

specific structures and benchmark circuits. Such test

structures are composed of ring oscillators, delay chains,

counters, and others [3][4]. They are generally designed

in full custom style, and must be carefully built for a

specific process. Benchmark circuits, on the other hand,

correspond to different applications and architectures in

order to represent real circuits and system blocks, such as

purely combinational circuits, finite state machines,

arithmetic blocks, and so on. Therefore, a benchmark set

consists of a collection of circuits in a common format,

which attempt to represent a range of problems for

evaluating algorithms and tools within an important

problem domain. In principle, if everyone uses the same

test cases to evaluate similar tools, it should be

straightforward to compare the results. Several

benchmark sets are widely used. The following are some

of the most important ones: ACM/SIGDA design

automation benchmarks, ITC’99 benchmarks, Politecnico

di Torino benchmarks [5]. The use of benchmarks for

validation and physical characterization of standard cell

libraries may lead to two situations: (a) not all cells from

the library are used in the benchmark circuit design, and

(b) the cells used in this circuit are not stimulated by all

possible input combinations, not guaranteeing the

complete functionality of these cells.

The combinational blocks generation of the test circuit

(benchmark), proposed in [6], are described in this work.

This specific benchmark was proposed to test and

validate the entire set of cells from a library. All the

library cells are present in such benchmark circuit and all

possible input combinations are applied at each cell.

Timing and power consumption verification is also taken

into account. The idea is not only use this circuit for

simulation, but indeed it will be prototyped in the same

ASIC die representing a kind of ‘certification circuit’ of

the non-pre-designed library used in such ASIC.

The main contribution of this work is the specification

of the combinational blocks implementation. These

combinational blocks are the main structures of the

benchmark circuit and they will be responsible for

important benchmark characteristics as the use of all cells

from a library under test and for the application of all

input combinations in each cell, guaranteeing the

validation of the entire digital cell library. The automatic

generation of this kind of circuit becomes even more

important when library-free technology mapping is

addressed due to the fact that it is based on virtual

libraries, whose original cells are not previously designed

and physically verified.

The benchmark architecture is presented in Section 2.

Section 3 presents the procedure for the combinational

blocks generation. Experimental results are given in

Section 4 and the conclusions are discussed in Section 5.

2. BENCHMARK ARCHITETURE

In terms of logic cell functionality, three main groups

may be identified: (1) inverters and buffers; (2) sequential

cells; (3) combinational cells. Group (1) is easily verified

since such a kind of cell presents only one input signal.

Group (2), in turn, has generally a small and limited

number of different latches and flip-flops, facilitating its

verification. Moreover, in this group the timing

performance is usually more important than the logic

functionality that is somewhat trivial in the pass and

storage modes. In the case of group (3), the number of

cells is generally more expressive than the other ones.

Moreover, the number of input nodes in these cells makes

the functional test a more complex task due to the 2
n

different input combinations, being ‘n’ the number of

input nodes.

The most naïve strategy to test the group (3) consists

in placing all cells connected in parallel to the same input

bus, where all input combinations are applied

simultaneously. However, by doing so, input buffering

must be considered due to the high node capacitances

(great number of inputs connected to the same node).

Furthermore, multiplexers should be used at the output

signals to reduce the number of output pads. In this

approach, timing and power consumption characteristics

are not easily verified since the signals propagate only

through single cells in testing.

The proposed architecture consists in building

combinational blocks that receive an input bus, where all

signal combinations are provided, and produce a

sequence of output vectors also presenting all possible

signal combinations, to be then applied to the next

combinational block. The combinational block is

illustrated in Fig. 1.

Figure 1. Combinational block illustration.

The cells used in a block should not be re-used in

other ones. Moreover, the sequence of input and output

signals should not be similar in order to avoid a very

simple mapping or even short-circuits between input and

output nodes. The implementation of these small

combinational blocks guarantees the use of the whole set

of combinational cells from the library, being all input

vectors applied at the input nodes. The combinational

blocks can be cascaded allowing some timing and

consumption verification in longer and heterogeneous

paths, which can be even evaluated in respect to the

power supply variation. Then, once the combinational

blocks have been generated, they can be connected in

chain, using the output signals from one circuit as inputs

of the subsequent block, as shown in Fig. 2.

combinational

circuit

combinational

circuit

combinational

circuit

.

.
.
.

.
.
.

Figure 2. Combinational blocks connected in chain.

3. COMBINATIONAL BLOCKS GENERATION

3.1. Requirements

The input file of the presented tool is a library

description in Liberty format. All the present cells are to

be put in at least one block. Each cell, except the first one

placed in the block, will be tested with some possible

input vectors.

Each block has the minimum number of inputs defined

by the block cell with the biggest number of inputs.

Two stages are present: (1) the first one consists of the

library cells connected to the primary inputs and (2) the

second is a set of functions built with some library cells in

order to create a vector with all possible combinations to

be the input of the next block. Therefore, the output of the

1
st
 block is the input for the 2

nd
 one, and so on.

So, the input of the first block (input for the first

stage) is an n-bit vector with 2
n
 combinations and the

output must be a vector with k-bits where the 2k signals

combinations occur, being n ≥ k. A combinational block

is shown in Fig. 3.

In order to respect this condition, 2k different vectors

must be identified at the outputs of the first stage. It is

obtained with a minimum number of ‘k’ cells and a

maximum of ‘2
k
-1’ cells. The permutation and inversion

of cell inputs can be explored to attain a certain number

of cells at the first stage.

Figure 3. Combinational circuit block diagram.

3.2. Implementation

The generation of the combinational blocks starts with

the parsing of the Liberty library file, which is loaded into

the tool data structure.

The initial stage consists in sorting the available cells.

This choice will influence on the order in which they will

be used later. Cells can be sorted through four methods:

(a) alphabetical ordering; (b) input number; (c) quantity

of minterms; and (d) random ordering.

Once the set of cells is sorted, the construction of the

first stage of a block is performed. Each picked cell,

except the first one of the block, is tested with all the

combinations of the cell inputs, if no stopping criterion

was used regarding the number of combinations, or it is

tested with some of the cell inputs in the case of using a

stopping criterion. The combinations of cell inputs can

consider permutations and inversions.

The goal is to achieve the maximum number of

different combinations. One of the biggest problems in

the block construction arises at this point.

Being n the number of block inputs and z the number

of cell inputs:

(1) For zn = , the number of cell inputs combinations

is !n (without considering inputs inversion) and
n

n 2!× , considering the permutations with possible

input inversions.

(2) For zn> , the number of cell inputs combinations

is
!)(

!

zn

n

−

 (without considering inputs inversion)

and, z

zn

n
2

!)(

!
×

−

considering the permutations

with possible input inversions.

Therefore, exhaustive search can become

impracticable for a library with cells that have more than

4 inputs.

To solve such problem, three different stopping

criteria have been implemented, besides exhaustive search

(which would be up to the user to try). The first one is the

number x of tests performed. The cell is put into the block

with its best input order after x tests. Another method is

stopping when the combinations number is increased by

one. If there are currently x different combinations, when

x+1 is reached tests will stop. And the last method is

breaking the search after a certain time (defined by the

user) expires. All three methods are important because

they guarantee the completion of the blocks building task

in a short time.

Whenever the number of distinct output vector

combinations desired, i.e. the 2k different signal

combinations are achieved, a block is complete and the

construction of another one starts.

Until all cells in library have been used at the first

stage of one of the blocks, the generation continues.

The last block in the structure may have to use in the

first stage one or more cells that have already been used

before, because they may be needed to complete the

number of distinct output vectors required.

After the first stage is complete in every block, it is

necessary to generate the equations which will generate

the k-output vector. If we have an n-input block with m

cells, there will be 2
k

expected output vectors from the

first stage, and 2
m
-2

k
 vectors that are not supposed to

happen. The first ones are used to recreate the desired

signals, while the latter will be marked as don’t cares, in

order to optimize the generated equations.

3.3. Sample block

Supposing a block with 4-bit input vector in which it

is desired to generate a 4-bit output vector. For that, 2
4

distinct signal combinations must be identified at the

outputs of the first stage, i.e. it will be necessary at least 4

cells in the first stage of this block. Starting the process,

the first cell is picked with its normal inputs (without

trying permutations and inversions). When the second cell

is picked it is tested with all inputs combinations, i.e. in

this blocks generation, no stopping criterion was used

regarding the number of combinations of cell inputs to

test the cell. The combination of inputs which generate

more distinct output signal combinations will be fixed as

the input of that cell. At this point, having 2 cells the

maximum number of outputs combinations will be 22. The

third cell is selected and also tested with all inputs

combinations. Now, the maximum number of outputs

combinations will be 2
3
. In the same way, the fourth cell

is selected and tested with all inputs combinations. At this

point, the maximum number of outputs combinations will

be 2
4
, which corresponds to the minimal number of signal

combinations necessary to generate the 4-bit output

vector. If it was possible to achieve this target, the

generation of the first stage of this block is completed;

otherwise it will be necessary to add other cells until all

the 2
4
 combinations occur. In Fig. 4 it is shown a sample

block.

Figure 4. Sample block illustration.

In the generation of this block the four first cells were

selected and fixed, but it was not possible to generate the

24 output signal combinations. As shown in Table I, it was

generated 12 distinct combinations. Thus, the fifth cell

was added. Considering this cell C5 with A1(not_IN1),

A2(not_IN4) as inputs, still only 12 distinct vectors were

identified. Testing C5 with A1(IN1), A2(not_IN4) as

inputs, i.e. another inputs combination, 16 distinct vectors

were generated as also shown in Table I. At this point, the

generation of the first stage of this block is completed.

In the second stage it is necessary to generate the 4

functions which will generate the 4-output vector. Since

the first stage of this block has 5 cells, 2
5
 vectors could

occur. The output vector must have 4 bits, so there will be

2
4
 expected vectors from the first stage, and 2

5
-2

4
 vectors

are supposed not happen. The expected vectors are used

to recreate the desired signals, while the latter will be

marked as don’t cares, as shown in Table II.

Table I: Sample block with 4 cells and with 5 cells.

I1 I2 I3 I4 C1 C2 C3 C4 C1 C2 C3 C4 C5

0 0 0 0 1 1 0 1 1 1 0 1 1

0 0 0 1 1 1 1 0 1 1 1 0 1

0 0 1 0 1 0 0 1 1 0 0 1 1

0 0 1 1 1 0 1 0 1 0 1 0 1

0 1 0 0 0 1 0 1 0 1 0 1 1

0 1 0 1 0 1 1 0 0 1 1 0 1

0 1 1 0 0 0 0 1 0 0 0 1 1

0 1 1 1 0 0 1 0 0 0 1 0 1

1 0 0 0 0 0 1 1 0 0 1 1 0

1 0 0 1 0 0 1 1 0 0 1 1 1

1 0 1 0 0 1 1 1 0 1 1 1 0

1 0 1 1 0 1 1 1 0 1 1 1 1

1 1 0 0 1 0 1 1 1 0 1 1 0

1 1 0 1 1 0 1 1 1 0 1 1 1

1 1 1 0 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1

4. RESULTS

A commercial library with 90 cells, out of which 64

cells are purely combinational, was used as test vehicle.

Eight blocks were generated from the 64 combinational

cells, containing 10, 11, 13, 8, 7, 7, 6, and 5 cells in the

first stage of each combinational block, respectively. The

functionality of such blocks was validated through

functional and electrical simulations. Also, the final

layout of the circuit composed of the 8 combinational

blocks was designed. Another library composed by 220

combinational cells was tested. It generated 38 blocks,

containing 8, 6, 6, 6, 7, 5, 5, 7, 7, 6, 5, 6, 7, 5, 7, 6, 6, 5,

6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 5, 6, 6, 5, 6, 6, 6, 5 and 5 cells

in the first stage of each combinational block,

respectively. The blocks were generated in 6 minutes,

approximately and no stopping criterion was used

regarding the number of combinations of cell inputs to

test the cells.

5. CONCLUSIONS

The main contribution of this work is the

implementation of combinational blocks in order to

generate a benchmark circuit capable of validating cell

libraries. It is difficult to find a benchmark that uses all

cells from a library and when it uses all cells of one, it

may probably not use all cells of other library. Thus, it

will be necessary exhaustive searches in order to find a

benchmark that uses all cells, for every target library.

Even when all cells from a library are used in this circuit,

they are eventually not stimulated by all possible input

combinations, not guaranteeing the complete functionality

of these cells. Timing and consumption values can also be

extracted from this benchmark circuit.

Table II: Second stage functions.

C1 C2 C3 C4 C5 f1 f2 f3 f4

0 0 0 0 0 x x x x

0 0 0 0 1 x x x x

0 0 0 1 0 x x x x

0 0 0 1 1 0 1 1 0

0 0 1 0 0 x x x x

0 0 1 0 1 0 1 1 1

0 0 1 1 0 1 0 0 0

0 0 1 1 1 1 0 0 1

0 1 0 0 0 x x x x

0 1 0 0 1 x x x x

0 1 0 1 0 x x x x

0 1 0 1 1 0 1 0 0

0 1 1 0 0 x x x x

0 1 1 0 1 0 1 0 1

0 1 1 1 0 1 0 1 0

0 1 1 1 1 1 0 1 1

1 0 0 0 0 x x x x

1 0 0 0 1 x x x x

1 0 0 1 0 x x x x

1 0 0 1 1 0 0 1 0

1 0 1 0 0 x x x X

1 0 1 0 1 0 0 1 1

1 0 1 1 0 1 1 0 0

1 0 1 1 1 1 1 0 1

1 1 0 0 0 x x x X

1 1 0 0 1 x x x X

1 1 0 1 0 x x x X

1 1 0 1 1 0 0 0 0

1 1 1 0 0 x x x X

1 1 1 0 1 0 0 0 1

1 1 1 1 0 1 1 1 0

1 1 1 1 1 1 1 1 1

6. REFERENCES
[1] A. Reis, R. Reis and M. Robert, “Topological Parameters

for Library Free Technology Mapping”, SBCCI, 1998.

[2] A. Reis and R. Reis, “Covering strategies for library free

technology mapping”, In: ACM International Workshop

Logic Synthesis, Lake Tahoe, 1999.

[3] S. Long, “Test Structures for Propagation Delay

Measurements on High-Speed Integrated Circuits”, IEEE

Transactions on Electron Devices, vol. ED-31, N 8, 1984.

[4] M. Bhushan, M.B. Ketchen, S. Polonsky and A. Gattiker,

“Ring Oscillator Based Technique for Measuring

Variability Statistics”, ICMT, 2006.

[5] J.E. Harlow, “Overview of popular benchmark sets”, IEEE

Design & Test of Computers, vol.17, no.3, p.15-17, 2000.

[6] M.V.N. Gomes, C.A. Silva, S. Bavaresco, G.H. Sartori, L.

Rosa Jr., A.I. Reis and R.P. Ribas, “Test Circuit for

Functional Verification of Automatically Generated Cell

Library”, LATW, 2007.

