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ABSTRACT 

 

Power consumption is currently an important issue in 

digital circuit design. Minimal leakage dissipation 

represents a key factor for emerging downscaling 

transistor technologies. Leakage Estimation Environment 

(LEE) tool, presented herein, allows fast subthreshold 

leakage power estimation in digital CMOS circuits, by 

using logic and probabilistic evaluations of signals 

through the circuit. The software development and 

experimental results are discussed in this paper. 

 

1. INTRODUCTION 

 

Aggressive scaling of CMOS devices has resulted in 

higher integration density and improved performance. 

Simultaneously, static power consumption has become an 

important issue due to emergent mobile products. Standby 

currents are increasing significantly in advanced 

submicron and sub-100nm technologies, where threshold 

voltage and gate oxide thickness of transistors tend to 

reduce. As a consequence, great effort has been 

concentrated in understanding the leakage mechanisms, 

modeling their behavior and developing design 

techniques for static power saving [1]-[6]. 

Leakage power estimation is absolutely necessary for 

designing low-static-power digital circuits. Among 

different leakage mechanisms, two major ones can be 

identified: subthreshold leakage and gate oxide leakage. 

Several leakage prediction methods have been reported in 

the literature [2]-[6]. Gu et al. in [2] and Cheng et al. in 

[3] estimate subthreshold leakage current by using 

analytical models, while Yang et al. in [4] includes the 

gate leakage component in the analysis. These models are 

usually computer timing consuming in huge circuits due to 

the analytical method complexity. 

A fast estimation of subthreshold leakage model is 

presented in [6]. This work predicts subthreshold current 

based on the device electrical conductance association. 

Gate leakage current is also fast predicted based on the 

transistor bias condition, as reported in [5]-[6]. These 

approaches are not as accurate as complex analytical 

models, but they provide leakage power values useful to be 

used as a cost data in technology mapping procedure when 

low power system is addressed. 

This work presents the LEE tool for the circuit-level 

leakage analysis. Digital circuits, described through 

Boolean equations of cells and their connectivity, are 

evaluated according to their functionality in order to 

determine the logic values and the signal probabilities of 

internal and output nodes. The analysis of individual cells 

is provided by specific methods, not treated herein. In 

other words, the proposed work offers a mechanism 

useful to evaluate logic cell leakage models at circuit-

level. 

 

2. ENVIRONMENT DESCRIPTION 

 

The tool receives as entry data the circuit description 

in Boolean equation format, as illustrated in Fig. 1. It is 

then loaded into the data structure, which consists of a set 

of logic cells, with their respective equations, inputs and 

outputs, as well as a hash map of the input variables with 

the corresponding logic values and signal probability. 

 

 

(a) 

INORDER = a b c d e; 

OUTORDER = out1 out2; 

i1 = !(c * a); 

i2 = !(d * c); 

i3 = !(b * i2); 

out1 = !(i3 * i1); 

i4 = !(e * i2); 

out2 = !(i3 * i4); 

(b) 

Figure 1 – ‘C17’ ISCAS benchmark circuit description: 

(a) schematic; (b) equation format. 



When the circuit is loaded, all input logic values are 

set to ‘0’ logic value, and the input data probabilities are 

set to 0.5 as default value. It is possible to change all of 

them at a time or only in a specific pin. After setting the 

input data condition, the following tasks are performed: 

functional behavior, signal occurrence probability and 

cell leakage evaluation. 

The functional evaluation of the circuit generates the 

logic values of the internal nodes according to the each 

logic cell functionality. The probability evaluation, in 

turn, provides the signal value probability in each circuit 

node from the primary input definition. Finally, the 

leakage evaluation applies a certain leakage estimation 

procedure to each individual cell, according to the cell 

input condition. Note that, the standby currents are state 

dependents, i.e., they present different values depending 

on the input signals. 

The Leakage Evaluation Environment – LEE tool was 

developed in Java platform. The main features are the 

independency to the cell-level leakage model, and the 

circuit analysis using static logic values and signal 

probability. 

 

3. CIRCUIT BEHAVIOR EVALUATION 

 

The circuit evaluation is performed through a 

straightforward and recursive algorithm. The pseudo-code 

is shown in Fig. 2. The cell_set list holds the available 

cells for evaluation. The extraction of the logic behavior 

of each cell is then executed. After that, the signals are 

propagated throughout the entire circuit, from the primary 

inputs, according to the functionality of each logic gate. 

In order to determine the complete computing of the logic 

values in the circuit nodes, each cell has a counter, named 

in_degree, corresponding to its input number. When a 

value for one of its inputs is known, this counter is 

decremented. If it reaches ‘0’, it means that all its input 

pins have been defined, and then such cell will be 

considered in the next iteration, being included in the 

next_set list. Otherwise, some input data is missing to 

define the output value and the cell is not evaluated yet. 

 
 

Evaluate (list<cells> cell_set) { 

    

 if cell_set is empty return;                         

 for each cell c in cell_set { 

   evaluate c;                                             

                                             

   for each cell n in netlists© {                 

     define_input(n, c.output);                 

     n.in_degree--; 

     if n.in_degree == 0 add n to next_set; 

     } 

   } 

 

 evaluate(next_set); 

} 

 

Figure 2 - Pseudo-code for circuit evaluation. 

 

3.1. Logic evaluation 

 

Given a cell expression and the logic values present at 

its input pins, the output value is obtained by using a 

BDD (Binary Decision Diagram)-based tool, developed 

by the team. This graph-like structure allows efficient 

logic evaluation. 

 

3.2. Probability evaluation 

 

In order to evaluate the probability of the logic value 

‘1’ in internal and output signals, three basic rules are 

followed: (1) the AND logic probability is obtained 

through the multiplication of the probabilities of all the 

signals involved; (2) the OR logic probability is obtained 

through the sum of the probabilities of all the signals 

involved; (3) the NOT logic probability is the 

complement of the probability of the input. Fig. 3 

illustrates these rules. Their combination allows the 

probability estimation for all other gates, since the same 

input variable is not present in the Boolean equation more 

than once. 

 

3.3. Leakage estimation 

 

For each cell it is generated a transistor network 

according to the logic style chosen, e.g. conventional 

static CMOS, PTL and so on, since the leakage evaluation 

depends on the device arrangement. The circuit netlist 

together with the evaluated input vector allows both 

subthreshold and gate oxide leakage current predictions. 

The information of the minimum and maximum leakage 

values is stored, as well as the weighted average value. 

The weights applied correspond to the probability of each 

input vector to occur. Since the probability for each input 

signal is known, it is possible to determine the 

probabilities for each vector in the truth table of the cell. 

Making so, it is then possible to determine the minimum, 

maximum and average standby currents in the entire 

circuit. 

 
Figure 3 – Signal probability of logic gates. 



4. SPICE CORRELATION 

 

The simple C17 ISCAS benchmark circuit, depicted in 

Fig. 1a, is presented herein to illustrate the use of the LEE 

tool. The number at each signal indicates the iteration at 

which it was evaluated. An extraction of the report 

provided by the tool and containing the results is shown 

in Fig. 4 

In order to validate the estimation method, the tool 

provides also the possibility to save individual cell netlist 

together with all possible input vectors. Thus, a Spice 

simulation is made easy and fast for correlation. 

Hspice scripts are being developed in the sense to 

calculate individual cell leakage and the statistical 

average leakage of huge circuits, when all primary input 

combinations cannot be verified due to the number of 

signals. 

 
<Inputs> 

a logic [1] prob [0.5] 

b logic [1] prob [0.5] 

… 

N logic [0] prob [0.5] 

Total input #: N 

 

<Outputs> 

out1 logic [1] prob [0.53125] 

out2 logic [1] prob [0.609375] 

… 

outM logic [1] prob [value] 

Total output #: M 

 

<Cell X1> 

 Inputs: {i2=1, b=1} 

 Output value: 0 

 Output probability: 0.625 

 Normalized leakage: 4.0 

 Minimum leakage: 1.0 

 Maximum leakage: 4.0 

 Average leakage: 0.65625 

… 

<Cell Xi> 

 Inputs: {a=1, c=0} 

 Output value: 1 

 Output probability: 0.75 

 Normalized leakage: 2.5 

 Minimum leakage: 1.0 

 Maximum leakage: 4.0 

 Average leakage: 0.5625 

 

Total cell #: i 

 

Lower bound circuit leakage: 6.0 

Upper bound circuit leakage: 24.0 

Average circuit leakage: 3.8 

 

Figure 4 – Example of report provided by the tool. 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSIONS 

 

This paper presented a tool which allows the leakage 

estimation at circuit level for steady state values, as well 

as according to the signal occurrence probability. It is 

suitable for different leakage prediction models which 

evaluate such a kind of consumption at cell level. In 

future works, the search of input vector that represents the 

minimum leakage dissipation in a circuit can be improved 

by this tool. 
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