
LOGICAL SYNTHESIS FOR EFFICIENT CMOS TRANSISTOR NETWORK

1
Dionatan de S. Moura,

1
Caio G. P. Alegretti,

1
Leomar S. Rosa Jr.

2
André I. Reis,

1
Renato P. Ribas

1
Instituto de Informática – UFRGS, Porto Alegre, Brazil

2
Nangate Inc., Menlo Park, CA, Herlev, Denmark

{dsmoura, caio, leomarjr, rpribas@inf.ufrgs.br}, are@nangate.com

ABSTRACT

This paper presents the Boolean function synthesis in

different approaches, including the Quine-McCluskey

sum-of-products and product-of-sums, as well as mux-

based approach. A CAD tool has been developed in Java

platform to provide such logic equations, useful for

transistor network generation at cell level.

1. INTRODUCTION

Chip area, delay time, and power dissipation in digital

VLSI design depend on the number of transistors and on

the topological structure that is used for the logic gates

involved. Several state-of-the-art works investigate how

circuit optimizations at transistor level can lead to the best

network implementation in order to deliver the most

optimized and efficient logic cells structures. Some of

them are based on Boolean equation treatment, where

algebraic and Boolean optimizations are performed in a

given logic expression in order to get a reduced and

efficient derived transistor network [1-2]. Other ones are

based on graph optimizations, where the graph structure

presents a close relation between the logic function

description and the derived network [3-6].

Transistor networks can be implemented in different

logic styles. In this context, statis CMOS and PTL (Pass

Transistor Logic) styles are the most used for digital

VLSI designs. Examples of CMOS-like logic style, with

PMOs pull-up and NMOS pull-down planes, are CSP

(Complementary Series-Parallel, also called as CMOS in

the literature) [7], NCSP (Non-Complementary Series-

Parallel) [2], and LBBDD (Lower Bound Network

derived from BDDs) [8].

In this work, the problem of achieving a minimal logic

equation to implement CMOS-like transistor networks is

discussed. The Quine-McCluskey method [9] is reviewed

and some optimization points are investigated and

considered. Also, a MUX-based transistor network

topology and a methodology to generate it are presented.

The main contributions of this work are: (1) to

investigate and to review the Quine-McCluskey method

with the purpose of pointing some criteria that impact on

the derived transistor networks; (2) to present an

alternative CMOS-like network and a methodology to

automatically derive that from logic equations.

The remaining of this paper is organized as follows:

Section 2 discusses the Quine-McCluskey method and the

impact of the final solution on the transistor network,

while Section 3 presents the MUX-based topology and

the methodology to generate it. Section 4 presents a brief

discussion about factorization vs. branch-based

implementations. Finally, Section 5 presents the

conclusions.

2. QUINE-MCCLUSKEY OPTIMIZATION

The algorithm of Quine-McCluskey is a method that

minimizes a binary function completely with any number

of variables. The binary function should be in canonical

form so that it is represented completely. The canonical

form of a binary function is the sum of all of the

minterms, in the case of a sum-of-products (SOP), or it is

the product of all of the maxterms, in the case of a

product-of-sums (POS). Minterms and maxterms are

generically called terms, because the algorithm minimizes

POS or SOP.

2.1. Definitions

A literal is an instance of a variable of the function. A

product of literal is an AND operation among literal, or a

literal alone. A sum of literal is an operation OR among

literals or a literal alone. By default, a minterm is a

product of literals that belongs to the on-set of the

function. In the same way, a maxterm is a sum of literals

that belong to the off-set of the function. A POS0 is a

product of the maxterms in 0, a POS1 is a product of all of

the maxterms in 1. A SOP0 is a sum of all of the minterms

in 0. A SOP1 is a sum of the minterms in 1. A cube

represents one or more terms.

2.1. Prime implicants calculation

A prime implicant represents one or more terms. The

prime implicant will form the covering table, which will

further on be described.

All the terms of the truth table of the binary function

should be obtained, including the terms with ‘don't care’

values. Each term is a cube. All of the cubes (terms) are

separated in sets in agreement with the amount of literal

in ‘1’. Each cube with k literals of value ‘1’ will belong to

the set K. Each pair of cubes kn (belonging to the set TK)

and kn+1 (belonging to the set TK+1) that differ from each

other by just one literal value should be combined,

replacing this literal by a ‘don’t care’. The cubes that do

not combine will be prime implicants and they should be

added to the set P of prime implicants. The generated

cubes should be separated again in sets and combined,

repeating such steps until no more cube can be combined

therefore obtaining all prime implicants.

2.1.1 Example of prime implicants calculation

Consider the function(x1, x2, x3) represented by SOP1,

where the ‘!’ notation represents the complemented value

of the variable

!x1.!x2.!x3 + !x1.x2.x3 + x1.x2.!x3 + x1.x2.x3

The terms 000, 011, 110 and 111 are obtained from

the truth table (minterms, because it is a SOP1).

Separating the cubes (terms) in each set, it will be T0 =

{000}, T1 = {}, T2 = {011,110} and T3 = {111}.

T0 and T1 do not have combinations, as the same for

T1 and T2. T2 and T3 have two pairs of combinations. The

pair (011,111) generates the cube X11 and the pair

(110,111) generates the cube 11X. The cube 000 did not

combine, then it is a prime essential: P = {000}. Because

the cubes X11 and 11X will not combine in the next

steps, they are essential primes. Then the set P = {000,

11X, 11X} is obtained.

2.2. Minimal covering table

The objective of the minimal covering table is to

obtain to smallest amount of essential primes that

represent the terms of the function. Another option is to

obtain the smallest amount of literal for cube, called here

as the lower-bound method [1]. In the case of obtaining

the lower-bound version, the removal of all cubes with

greater or equal amount of literal should be tried, based

on the condition that all those cubes are covered by cubes

with smaller amount of literal. All cubes of largest

amount can be removed recursively until that it is no

longer possible to minimize them, and later to proceed

with the objective of obtaining the smallest amount of

essential primes.

2.2.1. Stage 1

The covering table is set up with all of the elements of

the set P of prime implicants and their covered terms.

Each line of the table represents an essential prime. The

prime implicants are put in growing order of literal

(decreasing of ‘don't cares’). The columns represent all

the prime implicants, except the terms with ‘don't care’

value. For each line, it is marked the columns when the

prime implicant cover the term of the column.

2.2.2. Stage 2

When a term is covered only by a single prime

implicant, the prime implicant becomes a prime implicant

essential for the function. After setting up the covering

table, all essential prime implicants should be removed

from the covering table, as well as remove all terms

covered by the essential prime implicants. The essential

prime implicants should be added to the set E of essential

prime implicants. If the table is empty, the minimized

function will be the elements of E.

2.2.3. Stage 3

The dominant terms should be removed. A term t1 is

dominant when exists at least another term t2, in which all

the prime implicants that cover t2 also cover t1.

2.2.4. Stage 4

The prime implicants dominated should be removed.

A prime implicant i1 is dominated when exists at least

another prime implicant i2 that cover all the terms of i1. In

case i1 and i2 are equivalent, in other words, they

dominate each other, the prime implicant with larger

amount of literals should be removed.

After reducing the table, one should return to the stage

2. In case that there are no more modifications, in other

words, the cycle of the stages 2, 3 and 4 no longer alter

the covering table, this table is in a cyclical case, where

there are no dominant and dominated prime implicants. In

that case, Petrick’s method [10] is applied.

2.2.5. Petrick’s Method

A POS is built, in which each sum of the POS will

represent a term of the cyclical covering table. The

elements of each sum of the POS are the prime implicants

to cover such term. The objective is to obtain the smallest

amount of prime implicants that satisfies the POS. To do

so, the law of the distribution is used. The result should

be the product with the smallest amount of prime

implicants. The prime implicants are removed from the

product and added to the set P of prime implicants. The

result of the minimized function binary is the union of the

set E of essential prime implicants and the set P.

If the result of the minimized binary function is a

SOP1, the resulting cubes (prime implicants of E union P)

will be the products of the sum. In case it is a POS0, they

will be the sums of the product.

2.2.6. Petrick’s Method example

Given a cyclical covering table with the terms t1, t2, t3

and t4, with the prime implicants i1, i2, i3 e i4.

POSPetrick = (i1 + i2).(i1 + i3).(i2+ i4).(i3+ i4)

 = (i1 + i2. i3) . (i2. i3+ i4)

 = i2. i3 + i1.i4

The law of the distribution is used. So much i2 and i3

as i1 and i4 cover the cyclical covering table. The result of

the Petrick’s method will be the prime implicants i2 and

i3, or i1 and i4.

Table 1. Cyclic covering table to POSPetrick.

 t1 t2 t3 t4

i1 C C - -

i2 C - C -

i3 - C - C

i4 - - C C

2.3. Criteria in the generation of covering table

For pattern, Quine-McCluskey algorithm minimizes a

binary function with the objective of obtaining the

smallest amount of cubes (prime implicants) that

represent the function entirely, resulting in a smaller

amount of sums in SOP or products in the POS. One can

also be tried a smaller amount of literal for cubes, called

lower-bound [1]. A smaller amount of literal for cubes

reduces the amount of transistors in series in CMOS-like

networks, bringing several advantages described in [1].

2.4. Results and analysis

Consider the SOP1 = ∑m(0, 1, 4, 5, 8, 9, 10, 11, 13,

16, 20, 22, 23, 24, 28, 29, 30, 31). Below they follow the

results of Quine-McCluskey applied in that SOP:

Table 2. Several representations of the same function.

 ‘lower-bound’ Function

POS0 No (A+!B+!C+E).(A+!C+!D).

.(!A+B+D+!E).(!A+C+!E).

.(!A+C+!D)

POS1 No (A+!B+C).(!A+!C+!D).

.(!A+D+E).(A+B+D).

.(!B+!C+D+!E)

SOP0 No !ABC!E + !ACD + A!B!DE+

+ A!CE + A!CD

SOP1 No !AB!C + ACD + A!D!E+

+!A!B!D + BC!DE

POS0 Yes (A+!B+!C+E).(A+!C+!D).

.(!A+B+D+!E).(!A+C+!E).

.(!A+C+!D)

POS1 Yes (A+!B+C).(!A+!C+!D).

.(!A+D+E).(!A+!B+!C).

.(B+D+E).(A+D+!E)

SOP0 Yes !ABC!E + !ACD + A!B!DE+

+ A!CE + A!CD

SOP1 Yes !AB!C + ACD + A!D!E+

+!A!DE + ABC + !B!D!E

The POS1 and the SOP1 with and without lower-bound

are syntactically different. In the SOP1, the products

‘!A!B!D’ and ‘BC!DE’ are represented by the products

‘!A!DE’, ‘ABC’ and ‘!B!D!E’. By doing so, two

minterms (with 3 and 4 literals) are replaced by three

minterms all of them with 3 literals, which is

advantageous in terms of implementation. The case is

similar for POS1.

3. MUX-BASED

The principle of Mux-based style is to obtain the

implementation of a binary function starting from a

multiplexer, or simply mux, where one of the variables of

the function is the input of the mux and the other

variables are the control.

3.1. Mux-based example

Consider the SOP1 S = !A.!B.C + A.!B.!C + A.B.!C +

A.B.C represented by mux-based, with input C and

control A e B, generating SMUX = !A.!B.C + !A.B.0 +

A.!B.!C + A.B.1 = !A.!B.C + A.!B.!C + A.B. Note that,

!A.B.0 was removed from SMUX and that A.B.1 was

optimized to A.B.

Figure 1 - Mux representing the equation:

SOP1 = !A.!B.C + A.!B.!C + A.B.!C + A.B.C.

Depending on which variable is chosen to be the input

of the mux, it can have dependences of the input variable

more or less, in other words, to have more or less constant

(0 or 1) as input.

3.2. Algorithm to find the input variable that

generates the best mux for a binary function

It is obtained from the truth table of the binary

function a list L0 of the minterms with values in ‘0’, other

list L1 with values in ‘1’ and other list Ldc with values in

‘don't care’. For each possible input of the mux it is made

the combinations of the values of the true table, contained

in those lists, analyzing the dependence of the input

variable in relation to the output. If the dependence exists,

the value of the input can depend on the value of the

variable directly or to depend on the denied value of the

variable. If the dependence does not exist, the input value

will be constant and it will be ‘0’ or ‘1’. A list with the

combination of the variables of control of the mux is

created for each dependence type. Then, it is analyzed for

which input it is obtained the larger number of

independence of the input variable, in other words, a

larger number of 0's and 1's as input to the mux.

The result of the analysis is the input variable that

results in larger amount of constant input values (0 or 1),

i.e. that has the largest list of independent values of input.

3.3. Results and analisys

Consider the sum-of-products Boolean equation:

SOP1 = ∑m(0,1,4,5,8,9,10,11,13,16,20,22,23,24,28,29,30,31)

The function has five variables: v1, v2, v3, v4 and v5.

The result of the algorithm of Mux-Based is in Table 3.

Both v1 and v4 have the largest number of input constants,

or independences of the input variable.

Table 3. Relation of the input variable with the amount of

independences (constants of input)

Input variable # Input constants

v1 12

v2 8

v3 8

v4 12

v5 6

5. CONCLUSIONS

In this paper was presented a CAD tool for logic

equation synthesis, including the Quine-McCluskey sum-

of-products and product-of-sums, as well as mux-based

approach. This tool is very useful for logical synthesisas

well as for CMOS transistor network generation.

6. REFERENCES

[1] F.R.Schneider, R.P.Ribas, S.S.Sapatnekar, A.I.Reis, “Exact

lower bound for the number of switches in series to

implement a combinational logic cell”, ICCD 2005, pp. 357

– 362.

[2] F.R.Schneider, A.I.Reis, “Fast CMOS Logic Style Using

Minimum Transistor Stack for Pull-up and Pull-down

Networks”, IWLS 2006, pp. 134 – 141.

[3] R.E.B. Poli, F.R. Schneider, R.P. Ribas and A.I. Reis.

Unified theory to build cell-level transistor networks from

BDDs. SBCCI 2003. Pages: 199 – 204.

[4] M. Avci and T. Yildirim. General design method for

complementary pass transistor logic circuits. Electronics

Letters, Vol.: 39, Number: 1, 9 Jan. 2003. Pages: 46 – 48.

[5] D. Kagaris and T.Haniotakis, “Transistor level Optimization

of Supergates”, ISQED 2006, pp.1 – 10.

[6] L.S.da Rosa Jr., F.Marques, T.M.G.Cardoso, R.P.Ribas,

S.S.Sapatnekar, A.I.Reis, “Fast Transistor Networks from

BDDs”. SBCCI 2006 proceedings.

[7] N. Weste and K. Eshraghian, “Principles of CMOS VLSI

Design”. Addison-Wesley, 2nd edition, 1993.

[8] L.S.da Rosa Jr., F.Marques, T.M.G.Cardoso, R.P.Ribas,

A.I.Reis. “BDDs and transistor networks with minimum

pull-up/pull-down chains”, IWLS 2006, pp. 142 – 149.

[9] McCluskey E.J. Minimization of Boolean functions. 1956.

Bell System Tech. J., Vol. 35, No. 5, pp. 1417 – 1444.

[10] Petrick S.K. On the minimization of Boolean functions.

1959. Proc. Int. Conf. Information Processing, Paris:

Unesco, pp. 422 – 423.

