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ABSTRACT 

 

This paper presents the Boolean function synthesis in 

different approaches, including the Quine-McCluskey 

sum-of-products and product-of-sums, as well as mux-

based approach. A CAD tool has been developed in Java 

platform to provide such logic equations, useful for 

transistor network generation at cell level. 

 

1. INTRODUCTION 

 

Chip area, delay time, and power dissipation in digital 

VLSI design depend on the number of transistors and on 

the topological structure that is used for the logic gates 

involved. Several state-of-the-art works investigate how 

circuit optimizations at transistor level can lead to the best 

network implementation in order to deliver the most 

optimized and efficient logic cells structures. Some of 

them are based on Boolean equation treatment, where 

algebraic and Boolean optimizations are performed in a 

given logic expression in order to get a reduced and 

efficient derived transistor network [1-2]. Other ones are 

based on graph optimizations, where the graph structure 

presents a close relation between the logic function 

description and the derived network [3-6]. 

Transistor networks can be implemented in different 

logic styles. In this context, statis CMOS and PTL (Pass 

Transistor Logic) styles are the most used for digital 

VLSI designs. Examples of CMOS-like logic style, with 

PMOs pull-up and NMOS pull-down planes, are CSP 

(Complementary Series-Parallel, also called as CMOS in 

the literature) [7], NCSP (Non-Complementary Series-

Parallel) [2], and LBBDD (Lower Bound Network 

derived from BDDs) [8]. 

In this work, the problem of achieving a minimal logic 

equation to implement CMOS-like transistor networks is 

discussed. The Quine-McCluskey method [9] is reviewed 

and some optimization points are investigated and 

considered. Also, a MUX-based transistor network 

topology and a methodology to generate it are presented. 

The main contributions of this work are: (1) to 

investigate and to review the Quine-McCluskey method 

with the purpose of pointing some criteria that impact on 

the derived transistor networks; (2) to present an 

alternative CMOS-like network and a methodology to 

automatically derive that from logic equations. 

The remaining of this paper is organized as follows: 

Section 2 discusses the Quine-McCluskey method and the 

impact of the final solution on the transistor network, 

while Section 3 presents the MUX-based topology and 

the methodology to generate it. Section 4 presents a brief 

discussion about factorization vs. branch-based 

implementations. Finally, Section 5 presents the 

conclusions. 

 

2. QUINE-MCCLUSKEY OPTIMIZATION 

 

The algorithm of Quine-McCluskey is a method that 

minimizes a binary function completely with any number 

of variables. The binary function should be in canonical 

form so that it is represented completely. The canonical 

form of a binary function is the sum of all of the 

minterms, in the case of a sum-of-products (SOP), or it is 

the product of all of the maxterms, in the case of a 

product-of-sums (POS). Minterms and maxterms are 

generically called terms, because the algorithm minimizes 

POS or SOP. 

 

2.1. Definitions 

 

A literal is an instance of a variable of the function. A 

product of literal is an AND operation among literal, or a 

literal alone. A sum of literal is an operation OR among 

literals or a literal alone. By default, a minterm is a 

product of literals that belongs to the on-set of the 

function. In the same way, a maxterm is a sum of literals 

that belong to the off-set of the function. A POS0 is a 

product of the maxterms in 0, a POS1 is a product of all of 

the maxterms in 1. A SOP0 is a sum of all of the minterms 

in 0. A SOP1 is a sum of the minterms in 1. A cube 

represents one or more terms. 

 

2.1. Prime implicants calculation 

 

A prime implicant represents one or more terms. The 

prime implicant will form the covering table, which will 

further on be described. 



All the terms of the truth table of the binary function 

should be obtained, including the terms with ‘don't care’ 

values. Each term is a cube. All of the cubes (terms) are 

separated in sets in agreement with the amount of literal 

in ‘1’. Each cube with k literals of value ‘1’ will belong to 

the set K. Each pair of cubes kn (belonging to the set TK) 

and kn+1 (belonging to the set TK+1) that differ from each 

other by just one literal value should be combined, 

replacing this literal by a ‘don’t care’. The cubes that do 

not combine will be prime implicants and they should be 

added to the set P of prime implicants. The generated 

cubes should be separated again in sets and combined, 

repeating such steps until no more cube can be combined 

therefore obtaining all prime implicants. 

 

2.1.1 Example of prime implicants calculation 

 

Consider the function(x1, x2, x3) represented by SOP1, 

where the ‘!’ notation represents the complemented value 

of the variable 

 

!x1.!x2.!x3 + !x1.x2.x3 + x1.x2.!x3 + x1.x2.x3 

 

The terms 000, 011, 110 and 111 are obtained from 

the truth table (minterms, because it is a SOP1). 

Separating the cubes (terms) in each set, it will be T0 = 

{000}, T1 = {}, T2 = {011,110} and T3 = {111}. 

T0 and T1 do not have combinations, as the same for 

T1 and T2. T2 and T3 have two pairs of combinations. The 

pair (011,111) generates the cube X11 and the pair 

(110,111) generates the cube 11X. The cube 000 did not 

combine, then it is a prime essential: P = {000}. Because 

the cubes X11 and 11X will not combine in the next 

steps, they are essential primes. Then the set P = {000, 

11X, 11X} is obtained. 

 

2.2. Minimal covering table 

 

The objective of the minimal covering table is to 

obtain to smallest amount of essential primes that 

represent the terms of the function. Another option is to 

obtain the smallest amount of literal for cube, called here 

as the lower-bound method [1]. In the case of obtaining 

the lower-bound version, the removal of all cubes with 

greater or equal amount of literal should be tried, based 

on the condition that all those cubes are covered by cubes 

with smaller amount of literal. All cubes of largest 

amount can be removed recursively until that it is no 

longer possible to minimize them, and later to proceed 

with the objective of obtaining the smallest amount of 

essential primes. 

 

2.2.1. Stage 1 

 

The covering table is set up with all of the elements of 

the set P of prime implicants and their covered terms. 

Each line of the table represents an essential prime. The 

prime implicants are put in growing order of literal 

(decreasing of ‘don't cares’). The columns represent all 

the prime implicants, except the terms with ‘don't care’ 

value. For each line, it is marked the columns when the 

prime implicant cover the term of the column. 

 

2.2.2. Stage 2 

 

When a term is covered only by a single prime 

implicant, the prime implicant becomes a prime implicant 

essential for the function. After setting up the covering 

table, all essential prime implicants should be removed 

from the covering table, as well as remove all terms 

covered by the essential prime implicants. The essential 

prime implicants should be added to the set E of essential 

prime implicants. If the table is empty, the minimized 

function will be the elements of E. 

 

2.2.3. Stage 3 

 

The dominant terms should be removed. A term t1 is 

dominant when exists at least another term t2, in which all 

the prime implicants that cover t2 also cover t1. 

 

2.2.4. Stage 4 

 

The prime implicants dominated should be removed. 

A prime implicant i1 is dominated when exists at least 

another prime implicant i2 that cover all the terms of i1. In 

case i1 and i2 are equivalent, in other words, they 

dominate each other, the prime implicant with larger 

amount of literals should be removed. 

After reducing the table, one should return to the stage 

2. In case that there are no more modifications, in other 

words, the cycle of the stages 2, 3 and 4 no longer alter 

the covering table, this table is in a cyclical case, where 

there are no dominant and dominated prime implicants. In 

that case, Petrick’s method [10] is applied. 

 

2.2.5. Petrick’s Method 

 

A POS is built, in which each sum of the POS will 

represent a term of the cyclical covering table. The 

elements of each sum of the POS are the prime implicants 

to cover such term. The objective is to obtain the smallest 

amount of prime implicants that satisfies the POS. To do 

so, the law of the distribution is used. The result should 

be the product with the smallest amount of prime 

implicants. The prime implicants are removed from the 

product and added to the set P of prime implicants. The 

result of the minimized function binary is the union of the 

set E of essential prime implicants and the set P. 

If the result of the minimized binary function is a 

SOP1, the resulting cubes (prime implicants of E union P) 

will be the products of the sum. In case it is a POS0, they 

will be the sums of the product. 

 

2.2.6. Petrick’s Method example 

 

Given a cyclical covering table with the terms t1, t2, t3 

and t4, with the prime implicants i1, i2, i3 e i4. 



POSPetrick =  (i1 + i2).( i1 + i3).( i2+ i4).( i3+ i4) 

                =  (i1 + i2. i3) . (i2. i3+ i4)   

                =   i2. i3  +  i1.i4 

 

The law of the distribution is used. So much i2 and i3 

as i1 and i4 cover the cyclical covering table. The result of 

the Petrick’s method will be the prime implicants i2 and 

i3, or i1 and i4. 

 

Table 1. Cyclic covering table to POSPetrick. 

 t1 t2 t3 t4 

i1 C C - - 

i2 C - C - 

i3 - C - C 

i4 - - C C 

 

2.3. Criteria in the generation of covering table 

 

For pattern, Quine-McCluskey algorithm minimizes a 

binary function with the objective of obtaining the 

smallest amount of cubes (prime implicants) that 

represent the function entirely, resulting in a smaller 

amount of sums in SOP or products in the POS. One can 

also be tried a smaller amount of literal for cubes, called 

lower-bound [1]. A smaller amount of literal for cubes 

reduces the amount of transistors in series in CMOS-like 

networks, bringing several advantages described in [1]. 

 

2.4. Results and analysis 

 

Consider the SOP1 = ∑m(0, 1, 4, 5, 8, 9, 10, 11, 13, 

16, 20, 22, 23, 24, 28, 29, 30, 31). Below they follow the 

results of Quine-McCluskey applied in that SOP: 

 

Table 2. Several representations of the same function. 

 ‘lower-bound’ Function 

POS0 No (A+!B+!C+E).(A+!C+!D). 

.(!A+B+D+!E).(!A+C+!E). 

.(!A+C+!D) 

POS1 No (A+!B+C).(!A+!C+!D). 

.(!A+D+E).(A+B+D). 

.(!B+!C+D+!E) 

SOP0 No !ABC!E + !ACD + A!B!DE+ 

+ A!CE + A!CD 

SOP1 No !AB!C + ACD + A!D!E+ 

+!A!B!D + BC!DE 

POS0 Yes (A+!B+!C+E).(A+!C+!D). 

.(!A+B+D+!E).(!A+C+!E). 

.(!A+C+!D) 

POS1 Yes (A+!B+C).(!A+!C+!D). 

.(!A+D+E).(!A+!B+!C). 

.(B+D+E).(A+D+!E) 

SOP0 Yes !ABC!E + !ACD + A!B!DE+ 

+ A!CE + A!CD 

SOP1 Yes !AB!C + ACD + A!D!E+ 

+!A!DE + ABC + !B!D!E 

 

The POS1 and the SOP1 with and without lower-bound 

are syntactically different. In the SOP1, the products 

‘!A!B!D’ and ‘BC!DE’ are represented by the products 

‘!A!DE’, ‘ABC’ and ‘!B!D!E’. By doing so, two 

minterms (with 3 and 4 literals) are replaced by three 

minterms all of them with 3 literals, which is 

advantageous in terms of implementation. The case is 

similar for POS1. 

 

3. MUX-BASED 

 

The principle of Mux-based style is to obtain the 

implementation of a binary function starting from a 

multiplexer, or simply mux, where one of the variables of 

the function is the input of the mux and the other 

variables are the control. 

 

3.1. Mux-based example 

 

Consider the SOP1 S = !A.!B.C  + A.!B.!C + A.B.!C + 

A.B.C represented by mux-based, with input C and 

control A e B, generating SMUX = !A.!B.C + !A.B.0 + 

A.!B.!C + A.B.1 =  !A.!B.C + A.!B.!C + A.B. Note that, 

!A.B.0 was removed from SMUX and that A.B.1 was 

optimized to A.B. 

 

 
 

Figure 1 - Mux representing the equation: 

SOP1 = !A.!B.C  + A.!B.!C + A.B.!C + A.B.C. 

 

Depending on which variable is chosen to be the input 

of the mux, it can have dependences of the input variable 

more or less, in other words, to have more or less constant 

(0 or 1) as input. 

 

3.2. Algorithm to find the input variable that 

generates the best mux for a binary function 

 

It is obtained from the truth table of the binary 

function a list L0 of the minterms with values in ‘0’, other 

list L1 with values in ‘1’ and other list Ldc with values in 

‘don't care’. For each possible input of the mux it is made 

the combinations of the values of the true table, contained 

in those lists, analyzing the dependence of the input 

variable in relation to the output. If the dependence exists, 

the value of the input can depend on the value of the 

variable directly or to depend on the denied value of the 

variable. If the dependence does not exist, the input value 

will be constant and it will be ‘0’ or ‘1’. A list with the 

combination of the variables of control of the mux is 

created for each dependence type. Then, it is analyzed for 

which input it is obtained the larger number of 

independence of the input variable, in other words, a 

larger number of 0's and 1's as input to the mux. 

The result of the analysis is the input variable that 

results in larger amount of constant input values (0 or 1), 

i.e. that has the largest list of independent values of input. 

 



3.3. Results and analisys 

 

Consider the sum-of-products Boolean equation: 

 
SOP1 = ∑m(0,1,4,5,8,9,10,11,13,16,20,22,23,24,28,29,30,31) 

 

The function has five variables: v1, v2, v3, v4 and v5. 

The result of the algorithm of Mux-Based is in Table 3. 

Both v1 and v4 have the largest number of input constants, 

or independences of the input variable. 

 

Table 3. Relation of the input variable with the amount of 

independences (constants of input) 

Input variable # Input constants 

v1 12 

v2 8 

v3 8 

v4 12 

v5 6 

 

 

5. CONCLUSIONS 

 

In this paper was presented a CAD tool for logic 

equation synthesis, including the Quine-McCluskey sum-

of-products and product-of-sums, as well as mux-based 

approach. This tool is very useful for logical synthesisas 

well as for CMOS transistor network generation. 
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