
An MPEG-4 DECODER DESIGN VERIFICATION USING FUNCTIONAL COVERAGE

Leandro M. de L. Silva, Romulo C. P. Camara, Maria de L. N. Neta, Helder F. de A. Oliveira,
Fabrício G. L. de Melo, Karina R. G. da Silva and Elmar U. K. Melcher

{leandro, romulo, maria, helder, fabricio, karina, elmar}@lad.dsc.ufcg.edu.br
Universidade Federal de Campina Grande
 Aprígio Veloso Avenue, 882, Bodocongó

 Campina Grande - PB - Brasil

ABSTRACT

Functional coverage is a simulation progress
measurement. Using functional coverage is possible to
know if all the functionalities have been tested and the
simulation can be finished. The proposal of this work is to
present a case study of coverage applied to some blocks
from MPEG-4 decoder design.

1. INTRODUCTION

Functional verification can be used to verify if the
implemented design is in accordance with the specification
[1]. One of the biggest problems in order to implement
functional verification is to assure that all specified
functionalities have been exercised.

To solve this problem, coverage is being used.
Functional coverage measures the progress of the
simulation and report, which functionalities have not been
exercised or have been exercised more than once. It can also
help to inspect the verification quality and to bias the
generation of stimuli in order to catch uncovered
functionalities, which are usually called coverage holes.

Some works have been produced aimed at improving
coverage. In [2] a method for defining views onto the
coverage data of cross-product functional coverage models
is proposed based on Selections, Projections and Groupings
in order to find the coverage hole. In other work [3]
techniques to discover and report coverage holes are shown,
based on the analysis of the Coverage Model. It uses the
definition of aggregated holes, partitioned holes and
projected holes and shows the uncovered and lightly
covered areas in cross-product functional coverage models.
Finally, work [4] defines the coverage methodology, which
proposes the separation of the coverage model definition
from the coverage analysis tool.

The objective of this work is to show a verification
application using simulation, random stimuli and functional
coverage in an MPEG-4 decoder design, in order to show if
all specified functionalities are exercised during the
simulation and find errors as soon as possible in the design.
In section 2 we will show VeriSC traditional, the
Verification Methodology used in this work, and in section
3 we will describe the MPEG-4 decoder design and the
ACDCIP (AC and DC Prediction Inverse), IQ (Inverse
Quatisation), RGB(Red Green Blue Block), PBC(Prediction
Block Copy) and IDCT (Inverse Discrete Cosine
Transform) modules of the MPEG-4 decoder which were
verified using the coverage process.

The remaining of the sections are organized as follows:
Section 4 shows the development methodology, Section 5
states some results and Section 6 shows the conclusion.

2. FUNCTIONAL VERIFICATION

The most difficult challenge in the design of any
system is to make sure that the final implementation is
free of implementation flaws. The traditional VeriSC
methodology automatically creates a DUV-specific
template testbench. It creates a SystemC based object
oriented environment to perform verification [5].

In traditional VeriSC methodology the testbench is
composed of the following elements: Source,
TDriver(s), TMonitor(s), Reference Model (RM) and
Checker. The testbench function is to input data into
the DUV and the RM, capturing the outputs and
comparing automatically if both of them are
equivalent. The synchronization mechanism of the
testbench is implemented by means of First-In-First-
Out queues (FIFOs), through which transactions are
sent. The testbench structure is intended to be used
only for synchronous designs with a single clock
signal.

Together with VeriSC, BVE_COVER library has
been used in order to implement functional coverage
and find coverage holes.

3. MPEG-4 DECODER DESIGN

The test case is a part of an MPEG-4 video
decoder IP core which is an OCP-IP compliant open-
source SystemC-RTL. It came from an effort of
Brazilian government who created some programs
with the objective of create some human resources in
the microelectronics area. One of them is the Brazil-
IP [6], in which the MPEG-4 decoder design has been
conceived. Today there is a first-time silicon chip [7].
The chip is ready and the layout has 22.7mm² at a
0.35µm CMOS 4ML technology with a 37MHz
working frequency. The schematic block from the
MPEG-4 decoder can be seen in Figure 1.

Figure 1: The MPEG-4 schematic block

The MPEG-4 decoder design has the characteristics that
can be seen in Table 1.

Golden Model code lines 12 718

RTL code lines 21 473

Testbench code lines 51 382
Test vectors 50 789 096

Table 1: MPEG-4 characteristics

The modules from the MPEG-4 used in this paper are
the following: ACDCIP, IQ, RGB and PBC.

The ACDCIP is the module responsible for predicting
the next coefficient blocks based on the previous ones by
means of an inverse prediction function. More precisely, it
is necessary the information about the DC coefficients of
the previous dequantized blocks to calculate the prediction
direction and the prediction values [8].

The IQ module is characterized by dequantize the
coefficient blocks by means of a multiplication of these
coefficients by a scaling factor, so a coefficients array is
dequantized to produce the reconstructed DCT coefficients.
The inverse quantization process has two methods:
1. The first method is used when the variable quant_type

is equals 1. All coefficients other than the DC
coefficient of intra block needing a two weighting
matrices are used. One is used for intra macroblocks
and the other for non-intra macroblocks.

2. The second method is used when quant_type == 0.
The inverse quantization of DC coefficient is
quantized using the same method as in the first inverse
quantization method. The change occurs in the
quantizer_scale and the stepsize, it will be twice the
quantizer_scale.

The RGB module is module responsible for calculating
the R, G and B values from Y, Cr and Cb values of the
pixels (x,y). RGB are respectively the red, green and blue
values of a frame. The Y pixel is the Luma value, Cr and
Cb are the Chroma values. The variance interval of RGB is
0 to 255, where 0 is the darkest color and 255 is the lightest
color. Cr and Cb are values received of the SUM module
and Y is the values, which came of the actual memory
images output. There are two variables, x and y, that are
values of coordinates x and y of the pixel in the image.
These values do not use all values of 8 bits. The variable x
uses an interval of 0 to 175 and y uses an interval of 0 to
143.

The IDCT module is the module responsible for
transforming the coefficients matrix in a samples matrix.
Mathematically, the IDCT operates on Y, an NxN matrix of
coefficients, and creates X, an NxN matrix of samples. The
action is described in terms of a transform matrix A. The
forward IDCT of an NxN coefficients matrix is defined as:

X=ATYA
Equation 1: Representation of IDCT

The elements are:

Aij=Cicos
2j1 iπ
2N

, where

Ci= 1N  i=0  , or Ci= 2N  i>0 

Equation 2: Transform matrix

The PBC module is the module responsible for
reading from previous frame values of luminance
(represented by Y) and chrominance (represented by
U and V) to compose the next image, for each
macroblock. The luminance and chrominance receive
unsigned values with 8 bits, which give the interval
from 0 to 255. Motion vectors (MVxy) are entry
dates of PBC module too. They are received from the
MVD module. The MVxy from each block of
luminance inform where are the luminance values
from previous frame. MVxy for chrominance values
should be calculated with the average of luminance
MVxy. The variance interval of Motion Vector values
is -64 to 63.

4. METHODOLOGY

The MPEG-4 decoder design has been verified
using the VeriSC methodology. More details can be
seen in [5].

The followed steps to verify the MPEG-4 decoder
design are specified following.

1. The verification environment (testbench)
used a Reference Model as a Golden Model
to the MPEG-4 decoder. The Reference
Model is the XVID software [9].

2. The second step was to implement the
hierarchical division from MPEG-4 decoder
design.

3. Each module from MPEG-4 decoder was
implemented and verified for different
engineers.

4. The verification was implemented using
simulation and the results coming from RTL
was compared with the results coming from
the Reference Model.

5. Coverage was used to show if all specified
functionalities has been exercised. In order to
do this, coverage plans were created for each
module to specify the aims of the
verification. Following, each group
implemented the coverage for each module,
complying with the coverage plans.

6. The results from coverage were analyzed and
the stimuli were directed based on these
results. Figure 2 shows the process used
during the simulation.

In order to implement functional coverage, a
SystemC Coverage library was used. It is called
BVE_COVER Library. The BVE-COVER library is
used to implement coverage-driven simulation. It is
composed of 4 basic components:

• BVE_COVER Bucket: contains all the
functionalities that must be exercised, as well
as the number of times that desires to cover
them.

• BVE_COVER Ignore: they are functionalities of
the Bucket that are not important for the simulation
and must be placed in the specification in order to
show false coverage holes.

• BVE_COVER Illegal: it must be placed in the
functionalities that should be not executed during
simulation. It plays a role similar to BVE_COVER
Ignore, but it works like an assertion showing
errors.

• BVE_COVER Cross_coverage: it crosses
buckets to show if the two functionalities of
buckets are executed at the same time.

Figure 2: stimuli generation flow

Random-constrained stimuli were used to verify the
Design Under Verification (DUV).

Based in the specified functionalities that the
BVE_COVER coverage library contains, a progress bar
shows the progress of the simulation, as shown in Figure 3.
Each functionality bucket is shown with a percentage. Then,
is possible to observe the verification progress.

Figure 3: Simulation progress from BVE_COVER library

5. RESULTS

The functional coverage of the MPEG-4 decoder design
was implemented in two stages. In the first stage a weak
coverage test was implemented, where a few functionalities
were tested, and in the second stage the coverage was
improved, adding some coverage on the new functionalities.
This improvement has resulted in one error detection before
the back-end flow (the layout phase) step.

This error detection was the most relevant result of the
application of functional coverage in the MPEG-4 decoder
design. It was a functional error detected in the ACDCIP
module.

The error found consisted of a difference between
the values received by the Checker from the
Reference Model and the DUV of that module. It was
found comparing the values received in the 86º test
vector at approximately 21 minutes of the simulation,
when the coverage process has reached 37% of
completeness. After that, the error in the PIACDC
module was fixed and the MPEG-4 decoder chip
could be succefully conceived.

Some other results were obtained from the
simulation and verification process, as can be seen in
Table 2. It shows the specified functionalities in each
module and the reached coverage respectively.

IDCT ACDCIP/QI RGB PBC

Functionalities
number

52 14 58 33

Coverage (%) 100 100 100 100
Table 2: Specified functionalities x coverage

6. CONCLUSIONS

This paper presented a functional coverage
approach applied to an MPEG-4 decoder design,
specifically in the modules ACDCIP, IQ, RGB, PBC
and IDCT. The experiments detected the occurrence
of one functional error in the ACDCIP module and a
speed up in the process of verification for some
modules of the MPEG-4. This result was very
important because it provided an economy of time and
money in the development process, making capable
the production of a first-time MPEG-4 silicon chip.

7. ACKNOWLEDGMENTS

To the National Counsel of Technological and
Scientific Development–CNPq by the scientific
initiation resources that make possible this work takes
place, to our advisor by the advices and constant
revisions and to the work partners by the help,
patience and friendship all the time.

8. REFERENCES

[1] J. Bergeron, editor. Writing Testbenches. Springer,
Boston, 2003.
[2] S. Asaf, E. Marcus, and A. Ziv. Defining coverage
views to improve functional coverage analysis. In
DAC ’04, pages 41–44, New York, 2004.
[3] O. Lachish, E. Marcus, S. Ur, and A. Ziv. Hole
analysis for functional coverage data, 2002.
[4] R. Grinwald, E. Harel, M. Orgad, S. Ur, and A.
Ziv. User defined coverage: a tool supported method­
ology for design verification. In DAC ’98, pages
158–163, New York, 1998.
[5] Karina R. G. da Silva, Elmar U. K. Melcher,
Guido Araujo, and Valdiney Alves Pimenta. An auto­
matic testbench generation tool for a systemc func­
tional verification methodology. In SBCCI ’04: Pro­

ceedings of the 17th symposium on Integrated circuits and
system design, pages 66–70, New York, NY, USA, 2004.
ACM Press.
[6] BrazilIp. www.brazilip.org.br/fenix. 2007.
[7] K. R. G. da Silva, E. U. K. Melcher, I. Maia, and H. do
N. Cunha. A methodology aimed at better integration of
functional verification and rtl design. Design Automation
for Embedded Systems, Volume 10, Number 4 / December,
2005, pp. 285­298.
[8] I. 14496­2:2001(E). Coding of Audio­Visual Objects ­
Part 2: Visual, Dec 2001.
[9] XVID Software. www.xvid.org. 2006

	An MPEG-4 decoder design verification using functional coverage
	Abstract

