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ABSTRACT 

 

In this paper, a Verilog-AMS implementation of the 

Hodgkin-Huxley neuron equations is presented, 

gradually, focusing on the simulation of every parameter 

for the comprehension of the entire model and 

culminating in the generation of an action potential. The 

behavioral model is in the process of improvement so as 

to include all the properties inherent to the dynamics of 

the model for different kinds of stimuli, and it will be 

used in the test bench of neuromorphic electronic circuits 

that are bound to come. 

 

1. INTRODUCTION 

 

Nowadays, in order to improve the performance of 

electronic circuits, the researches about how the 

biological structures of neuronal cells work have become 

critical to understand, mainly because the advantage of its 

application in fault-tolerant systems [1,2,3]. Despite of 

the complexity of their behavior, several studies have 

been done [4], some of which with satisfactory results in 

modeling the cells’ action potentials – which are 

responsible for the mechanisms of the transmission of 

nervous impulses – such as the Hodgkin and Huxley 

Model [5] and the Lewis Model [6]. Hence, various 

studies concerning the implementation of those and other 

models in Hardware Description or High Level 

Programming Languages, viz. VHDL, VHDL-AMS, C, 

C++, are being carried out [7] aiming its appliance in 

biological inspired circuits [8]. 

In this paper, an implementation in Verilog-AMS [9] 

of a single action potential based on Hodgkin-Huxley 

model is presented, as well as the behavior of its most 

significant parameters. The purpose of this effort is to 

build, using a robust language, a reference model for a 

test bench in which a posterior library of neuromorphic 

logic gates can be tested.  

 

2. HODGKIN-HUXLEY MODEL OVERVIEW 

 

Throughout a series of experiments with the giant 

axon of a squid, A. L. Hodgkin and A.F. Huxley have 

developed a mathematical description for the generation 

of action potentials (also known as spikes), and applied it 

by modeling an equivalent electrical circuit.  

The overview of their model is presented in the 

following subsections. 

 

 

2.1. Electrical circuit  

 
The Hodgkin and Huxley model can be understood as 

a parallel RC circuit, where the capacitance and variable 

resistors represent the capacitive and selective 

permeability feature of the membrane cell, respectively. 

The resistors can be thought of as the  resistance of the 

cell to the flow of the ions Na
+
, K

+
 and additional ions 

(consisting mainly of Cl
-
), whose influence is modeled by  

the leakage current. Such ion currents are responsible for 

the maintenance of the potentials between the interior and 

exterior of the cell. The voltage sources connected to 

each resistor represents the reversal potentials of the ions.  

Thus, the circuit that unites all those characteristics 

previously exposed is presented in Figure 1:  

 
Figure 1 - Schematic diagram of the Hodgkin-Huxley circuit. The 

subscript m and L stands for membrane and leakage respectively. This 

last subscript is due to the leakage current that model the effect of the 

ions that are not being explicitly considered within the dynamics of the 

cell membrane depolarization and repolarization.     

 

2.2. Equations  

 

Therefore, the equations that describe the behavior of 

the system are 

����� �  �� · 
����
� � ��������
�

�
       �1� 

 

������� � ����� · ������������� · ��������������� · �����  !����      �2� 
 

where Cm denotes the membrane capacitance, Im the total 

current that flows through the cell membrane, Iion and Eion 

the current and the reversal potential of a particular  ion, 

respectively. The voltage V is defined as the difference 

between the membrane potential and the resting potential:  
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Specific ion channels control the flow of the three 

currents (sodium current, potassium current and leakage 

current), the resistances that characterize them, can be 

thought of as conductances as well, thus �� stands for the 

maximum conductance achieved by an ion if all the 

channels are open. The variables of activation and 

inactivation (x and y, also known as gating variables) 

stand for the probability of an ion channel to be open or 

closed to the passage of that ion; hence the range of these 

variables is between 0 and 1. They obey the differential 

equation: 
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A similar equation is valid for the inactivation 

variable. The potassium ion encloses only one variable of 

activation n, while the sodium ion encloses a variable of 

activation m, and a variable of inactivation h. 

The rate constants α and β are non-linear functions of 

the potential, that have been adjusted to fit experimental 

data, so as the exponents of the gating variables (p1 and 

p2). The first ones are then given by: 
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2.3. Parameters’ values  

 

The values of the parameters used in this 

implementation are those originally reported by Hodgkin 

and Huxley as seen in Table 1: 

 
Parameters Ions 

Na+ K+ Cl-(Leakage) 

Reversal  

Potential 

( E ) 

 

115 mV 

 

-12 mV 

 

10.59895 mV 

Maximum 

Conductance    

 ( �� ) 
 

120 mS/cm2 

 

36 mS/cm2 

 

0.3 mS/cm2 

Table 1 - Parameters of the Hodgkin and Huxley model. 

 

The capacitance of the membrane is 1 µF/cm
2
, and the 

resting potential is considered to be zero. 

 

3. VERILOG-AMS IMPLEMENTATION 
 

The high level implementation using the Verilog-

AMS language was built in a sequential bottom-up 

method – which means that a variable present in a 

specific equation have its behavior tested before its 

proper inclusion in the model equations –, due to the 

possibility of verifying the existence of any errors within 

the parameters of the model and better understanding of 

its dynamics. This process is illustrated in the subsequent 

topics. 

Solving the Hodgkin and Huxley differential 

equations, the variables of activation and inactivation 

have the following aspect: 
 

���, �� �  �<   ��<  �/� · =.0 
�
>?@       �11� 

 

The steady state value and the boundary conditions 

that satisfy the equation when t=0 are �< and �/ 

respectively, A) is the time constant of the variable. 

 

3.1. Time constants  

 

Each activation and inactivation variable (n, m and h), 

has its own time constant (τn , τm and τh that are a function 

of the rate constants α and β), whose behavior determines 

how fast these variables reach their steady state values. 

The basics of the analog process of all the time constants 

are shown in the Listing 1: 

 
Listing 1 - Verilog-AMS time constants’ code. The first piece is for 

time constant of n, and the second is for the time constants of m and h. 
 

//time constant of n 

analog begin 

an = 0.01k*(10m-(V(tn)-Vrep))/(limexp((10m-(V(tn)-

Vrep))/10m)-1); 

Bn = 0.125*limexp(-(V(tn)-Vrep)/80m); 

Tn = 1/(an+Bn)*pow(10,-3);  

I(tn) <+ Tn; 

end   

 
//time constants of m and h 

analog begin 

ah = 0.07*limexp(-(V(th)-Vrep)/20m); 

Bh = 1/(limexp((30m-(V(th)-Vrep))/10m)+1); 

am = 0.1k*(25m-(V(tm)-Vrep))/(limexp((25m-(V(tm)-

Vrep))/10m)-1); 

Bm = 4*limexp(-(V(tm)-Vrep)/18m); 

Tm = 1/(am+Bm)*pow(10,-3); 

Th = 1/(ah+Bh)*pow(10,-3); 

I(tm) <+ Tm; 

I(th) <+ Th; 

End 

 

Note that the flows of the branches have as 

contributions the time constants; this routine simplifies 

the act of visualizing the behavior of the parameter of this 

subsection, since it is needless to create new disciplines 

and natures. 

Therefore, the time constants dependence of voltage 

achieved is presented by Figure 2:    

 
Figure 2 - Time constants for the gating variables m, n and h. 
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3.2. Steady state values  

 

Since there are three variables, there are also 

different steady states values (similar to the time 

constants, they also are a function of 

dictate the magnitude of the activation and inactivation 

variables for a certain voltage when the 

infinity. A piece of the analog process is presented 

Listing 2 (n∞ followed by m∞ and h∞):  

 
Listing 2 - Fragments of the Verilog-AMS code

scripts containing the behavior of the steady state values of 

 
// steady state of n 

analog begin 

... 

ninf = an/(an+Bn); 

I(x) <+ ninf; 

end 

 
// steady state of m and h 

analog begin 

... 

minf = am/(am+Bm); 

hinf = ah/(ah+Bh); 

I(x) <+ hinf; 

I(y) <+ minf; 

End 

 

The same observations made for the time constants 

apply also for the steady state values of the variables 

and h. 

The result of the simulation can be seen from     

Figure 3: 

Figure 3 - Steady states values for the gating variables 

 

3.3. Activation and inactivation variables

 

As a result of the appropriate behavior of the time 

constants and the steady states values, it was likely to 

simulate the n, m and h (setting initial condition for every 

variable). The Listing 3 presents the main

code of the preceding subsection.  
 

Listing 3 - Verilog-AMS code of the sodium 

inactivation variables. Once the implementation of

variable has a very similar code structure, it will not be presented.
 
//sodium variables 

analog begin 

... 

if ($abstime <= tdf) begin 

Vo=0; 

aho= 0.07*limexp(-(Vo-Vrep)/20m); 

Bho=1/(limexp((30m-(Vo-Vrep))/10m)+1); 

h∞ 

m

n∞ 

Since there are three variables, there are also three 

different steady states values (similar to the time 

, they also are a function of α and β). They 

dictate the magnitude of the activation and inactivation 

variables for a certain voltage when the time tends to 

is presented in the 

AMS codes extracted from the 

scripts containing the behavior of the steady state values of m, n and h.   

The same observations made for the time constants 

apply also for the steady state values of the variables n, m 

can be seen from     

 
for the gating variables n, m and h. 

. Activation and inactivation variables 

As a result of the appropriate behavior of the time 

constants and the steady states values, it was likely to 

(setting initial condition for every 

main additions to the 

sodium activation and 

implementation of the potassium 

it will not be presented. 

 

amo=0.1k*(25m-(Vo-Vrep))/(limexp((25m

1); 

Bmo=4*limexp(-(Vo-Vrep)/18m);

mo = amo/(amo+Bmo); 

ho = aho/(aho+Bho); 

end 

if ($abstime > tdf) begin 

Vo=50*pow(10,-3); 

aho= 0.07*limexp(-(Vo-Vrep)/20m);

Bho=1/(limexp((30m-(Vo-Vrep))/10m)+1);

amo=0.1k*(25m-(Vo-Vrep))/(limexp((25m

1); 

Bmo=4*limexp(-(Vo-Vrep)/18m);

mo = amo/(amo+Bmo); 

ho = aho/(aho+Bho); 

end 

tdr = td; 

tdf = td + width; 

if (($abstime > tdr)&&($abstime <= tdf)) begin

t = $abstime - tdr; 

end 

else if ($abstime > tdf) begin

t = $abstime - tdf; 

end 

else begin 

t = 0; 

end 

m = minf - (minf-mo)*limexp(-

h = hinf - (hinf-ho)*limexp(-

I(x) <+ m; 

I(y) <+ h; 

End 

 

Thus, the response of these activation and inactivation 

variables to a single pulse of 50

membrane) with a 30 ms width is presented 

Figure 4 - Activation and inactivation variables 

 

3.4. Conductances 

 

The conductance of each ion Na

replicated, as follows the most important changes in the 

analog interface code of the last subsection

conductance will not be presented since it is modeled as a 

constant): 
 

Listing 4 - The main difference between the Verilog

the activation and inactivation variables and

ions.  
 
analog begin 

... 

gna = gnamax*pow(m,3)*h; 

I(x) <+ gna;  

end 

 
analog begin 

... 

gk = gkmax*pow(n,4); 

I(x) <+ gk; 

end 

m∞ 
h 

m 

n 

Vrep))/(limexp((25m-(Vo-Vrep))/10m)-

Vrep)/18m); 

Vrep)/20m); 

Vrep))/10m)+1); 

Vrep))/(limexp((25m-(Vo-Vrep))/10m)-

Vrep)/18m); 

me > tdr)&&($abstime <= tdf)) begin 

else if ($abstime > tdf) begin 

-t/Tm); 

-t/Th); 

these activation and inactivation 

pulse of 50 mV (depolarization of the 

width is presented in Figure 4: 

 
Activation and inactivation variables n, m and h. 

of each ion Na
+
 and K

+
 may now be 

most important changes in the 

analog interface code of the last subsection (the leakage 

conductance will not be presented since it is modeled as a 

The main difference between the Verilog-AMS codes of 

variables and the conductances of the 



For an input of a single pulse of 26 

width, the result obtained is shown in Figure

Figure 5 - Transient analysis of the conductances of 

leakage conductance. 
 

3.5. Spike generation  

 

The formal action potential simulated by combining 

all those previous built behavioral modules

stimulus a single pulse of current with width o

Figure 6 presents three action potentials generated with 

currents of magnitude of 2.5 µA, 5 µA and 

Figure 6 - A current of 10 µA generates a spike 

other hand, currents of 2.5 µA and 5 µA are insufficiently strong to 

generate an action potential, then, there is merely

variation above the resting potential of the membrane (

top right of the figure). 

 

As can be seen in Figure 6, the spike 

include the refractory period yet - even though

incorporate the hyperpolarization period, in which the 

potential is below the resting potential 

defined firing threshold for a spike generation

work of modeling the Hodgkin and Huxley equations in 

Verilog-AMS is still in development, efforts are 

made in order to accurately model the behavior of the 

biological spike. 

 

4. CONCLUSIONS 

 

Throughout this paper the behavior of all parameters

and variables of a single action potential 

and Huxley model was shown, as well as 

implemented in Verilog-AMS so as to simulate a spike

gL 

gK 

gNa 

 mV with a 50 ms 

shown in Figure 5: 

the conductances of Na and K and the 

simulated by combining 

all those previous built behavioral modules had as a 

pulse of current with width of 1 ms. The 

action potentials generated with 

and 10 µA.  

 
generates a spike about 80 mV. On the 

insufficiently strong to 

generate an action potential, then, there is merely a slight voltage 

ting potential of the membrane (see insert in the 

spike model does not 

even though it does 

hyperpolarization period, in which the 

potential is below the resting potential - or a clearly 

firing threshold for a spike generation. Since the 

and Huxley equations in 

AMS is still in development, efforts are being 

the behavior of the 

 

Throughout this paper the behavior of all parameters 

of a single action potential of the Hodgkin 

as well as how they can be 

simulate a spike.  

The others aspects of the dynamics of

such as a more efficient description of the 

refractoriness and the threshold

ongoing research at the Federal University of Rio Grande 

do Norte.    
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